Skip to main content
Log in

Low dimensional dynamics in birdsong production

  • Colloquium
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

A Correction to this article was published on 08 October 2018

This article has been updated

Abstract

The way in which information about behavior is represented at different levels of the motor pathway, remains among the fundamental unresolved problems of motor coding and sensorimotor integration. Insight into this matter is essential for understanding complex learned behaviors such as speech or birdsong. A major challenge in motor coding has been to identify an appropriate framework for characterizing behavior. In this work we discuss a novel approach linking biomechanics and neurophysiology to explore motor control of songbirds. We present a model of song production based on gestures that can be related to physiological parameters that the birds can control. This physical model for the vocal structures allows a reduction in the dimensionality of the behavior, being a powerful approach for studying sensorimotor integration. Our results also show how dynamical systems models can provide insight into neurophysiological analysis of vocal motor control. In particular, our work challenges the actual understanding of how the motor pathway of the songbird systems works and proposes a novel perspective to study neural coding for song production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Change history

References

  1. A.J. Doupe, P.K. Kuhl, Ann. Rev. Neurosci. 22, 567 (1999)

    Article  Google Scholar 

  2. H.P. Zeigler, P. Marler, Neuroscience of Birdsong (Cambridge University Press, Cambridge, 2012)

  3. R. Mooney, Learn. Memory 16, 655 (2009)

    Article  Google Scholar 

  4. G.B. Mindlin, R. Laje, The Physics of Birdsong (Springer-Verlag, Berlin, 2005)

  5. T. Gardner, G. Cecchi, M. Magnasco, R. Laje, G.B. Mindlin, Phys. Rev. Lett. 87, 208101 (2001)

    Article  ADS  Google Scholar 

  6. G.B. Mindlin, T.J. Gardner, F. Goller, R. Suthers, Phys. Rev. E 68, 41908 (2003)

    Article  ADS  Google Scholar 

  7. M.A. Trevisan, G.B. Mindlin, F. Goller, Phys. Rev. Lett. 96, 58103 (2006)

    Article  ADS  Google Scholar 

  8. A. Amador, Y. Sanz Perl, G.B. Mindlin, D. Margoliash, Nature 495, 59 (2013)

    Article  ADS  Google Scholar 

  9. L.M. Alonso, J.A. Alliende, F. Goller, G.B. Mindlin, Phys. Rev. E 79, 41929 (2009)

    Article  ADS  Google Scholar 

  10. Y.S. Perl, E.M. Arneodo, A. Amador, F. Goller, G.B. Mindlin, Phys. Rev. E 84, 051909 (2011)

    Article  ADS  Google Scholar 

  11. A. Amador, F. Goller, G.B. Mindlin, J. Neurophysiol. 99, 2383 (2008)

    Article  Google Scholar 

  12. F. Goller, O.N. Larsen, Proc. Natl. Acad. Sci. USA 94, 14787 (1997)

    Article  ADS  Google Scholar 

  13. I.R. Titze, J. Acoust. Soc. Am. 83, 1536 (1988)

    Article  ADS  Google Scholar 

  14. A. Amador, G.B. Mindlin, Chaos 18, 043123 (2008)

    Article  ADS  Google Scholar 

  15. S.H. Strogatz, Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry and Engineering (Perseus Books, Cambridge, 1994)

  16. F. Goller, R.A. Suthers, J. Neurophysiol. 76, 287 (1996)

    Google Scholar 

  17. A. Amador, D. Margoliash, J. Neurosci. 33, 11136 (2013)

    Article  Google Scholar 

  18. J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, 1997)

  19. J.D. Sitt, E.M. Arneodo, F. Goller, G.B. Mindlin, Phys. Rev. E 81, 31927 (2010)

    Article  ADS  Google Scholar 

  20. J.D. Sitt, A. Amador, F. Goller, G.B. Mindlin, Phys. Rev. E 78, 011905 (2008)

    Article  ADS  Google Scholar 

  21. N.H. Fletcher, T. Riede, R.A. Suthers, J. Acoust. Soc. Am. 119, 1005 (2006)

    Article  ADS  Google Scholar 

  22. T.W. Troyer, Nature 495, 56 (2013)

    Article  ADS  Google Scholar 

  23. R.H.R. Hahnloser, A.A. Kozhevnikov, M.S. Fee, Nature 419, 65 (2002)

    Article  ADS  Google Scholar 

  24. M.A. Long, M.S. Fee, Nature 456, 189 (2008)

    Article  ADS  Google Scholar 

  25. M.A. Goldin, L.M. Alonso, J.A. Alliende, F. Goller, G.B. Mindlin, PLoS One 8, e67814 (2013)

    Article  ADS  Google Scholar 

  26. R.S. Hartley, R.A. Suthers, J. Neurobiol. 21, 1236 (1990)

    Article  Google Scholar 

  27. F.C. Hoppensteadt, E.M. Izhikevich, Weakly Connected Neural Networks (Springer, 1997)

  28. T. Riede, F. Goller, Brain Lang 115, 69 (2010)

    Article  Google Scholar 

  29. D. Margoliash, J. Neurosci. 6, 1643 (1986)

    Google Scholar 

  30. D. Margoliash, M. Konishi, Proc. Natl. Acad. Sci. USA 82, 5997 (1985)

    Article  ADS  Google Scholar 

  31. M.O. Magnasco, O. Piro, G.A. Cecchi, Phys. Rev. Lett. 102, 258102 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Amador.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amador, A., Mindlin, G.B. Low dimensional dynamics in birdsong production. Eur. Phys. J. B 87, 300 (2014). https://doi.org/10.1140/epjb/e2014-50566-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50566-5

Keywords

Navigation