Skip to main content
Log in

Electronically-implemented coupled logistic maps

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The logistic map is a paradigmatic dynamical system originally conceived to model the discrete-time demographic growth of a population, which shockingly, shows that discrete chaos can emerge from trivial low-dimensional non-linear dynamics. In this work, we design and characterize a simple, low-cost, easy-to-handle, electronic implementation of the logistic map. In particular, our implementation allows for straightforward circuit-modifications to behave as different one-dimensional discrete-time systems. Also, we design a coupling block in order to address the behavior of two coupled maps, although, our design is unrestricted to the discrete-time system implementation and it can be generalized to handle coupling between many dynamical systems, as in a complex system. Our findings show that the isolated and coupled maps’ behavior has a remarkable agreement between the experiments and the simulations, even when fine-tuning the parameters with a resolution of ~10-3. We support these conclusions by comparing the Lyapunov exponents, periodicity of the orbits, and phase portraits of the numerical and experimental data for a wide range of coupling strengths and map’s parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.L. Barabasi, Linked: How Everything is Connected to Everything else and what it Means (Plume Editors, 2002)

  2. S.H. Storgatz, Sync: the Emerging Science of Spontaneous Order (Hyperion, 2003)

  3. A. Barrat, M. Barthelemy, A. Vespignani, Dynamical Processes on Complex Networks (Cambridge University Press, 2008)

  4. E.N. Lorenz, J. Atmospheric Sci. 20, 130 (1963)

    Article  ADS  Google Scholar 

  5. A.T. Winfree, in The Geometry of Biological Time (Springer Science and Business Media, 2001), Vol. 12

  6. K. Kaneko, Chaos 25, 097608 (2015)

    Article  ADS  Google Scholar 

  7. A.L. Lloyd, J. Theor. Biol. 173, 217 (1995)

    Article  Google Scholar 

  8. B.E. Kendall, G.A. Fox, Theor. Pop. Biol. 54, 11 (1998)

    Article  Google Scholar 

  9. R.M. May et al., Nature 261, 459 (1976)

    Article  ADS  Google Scholar 

  10. M.J. Feigenbaum, J. Stat. Phys. 19, 25 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  11. K.T. Alligood, T.D. Sauer, J.A. Yorke, Chaos: An Introduction to Dynamical Systems (Springer, 1996)

  12. P. Collet, J.P. Eckmann, Iterated Maps on the Interval as Dynamical Systems (Springer Science & Business Media, 2009)

  13. G. McGonigal, M. Elmasry, Circuits Syst. IEEE Trans. 34, 981 (1987)

    Article  MathSciNet  Google Scholar 

  14. S.C. Phatak, S.S. Rao, Phys. Rev. E 51, 3670 (1995)

    Article  ADS  Google Scholar 

  15. N.K. Pareek, V. Patidar, K.K. Sud, Image Vision Comput. 24, 926 (2006)

    Article  Google Scholar 

  16. N. Singh, A. Sinha, Opt. Lasers Eng. 48, 398 (2010)

    Article  Google Scholar 

  17. S.E. Borujeni, M.S. Ehsani, Appl. Math. 6, 773 (2015)

    Article  Google Scholar 

  18. L. Stone, Nature 365, 617 (1993)

    Article  ADS  Google Scholar 

  19. M.S. Baptista, I. Caldas, Chaos Solitons Fractals 7, 325 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  20. M.S. Baptista, I. Caldas, Int. J. Bifurc. Chaos 7, 447 (1997)

    Article  MathSciNet  Google Scholar 

  21. E. Campos-Cantón, R. Femat, A. Pisarchik, Commun. Nonlinear Sci. Numer. Simul. 16, 3457 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  22. A.G. Radwan, J. Adv. Res. 4, 163 (2013)

    Article  Google Scholar 

  23. K. Kaneko, Prog. Theor. Phys. 69, 1427 (1983)

    Article  ADS  Google Scholar 

  24. K. Kaneko, Physica D 41, 137 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  25. Y.L. Maistrenko, V.L. Maistrenko, A. Popovich, E. Mosekilde, Phys. Rev. E 57, 2713 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  26. L.Q. English, Z. Zeng, D. Mertens, Phys. Rev. E 92, 052912 (2015)

    Article  ADS  Google Scholar 

  27. P. Horowitz, W. Hill, The Art of Electronics (Cambridge University Press, 1989)

  28. M. Suneel, Sadhana 31, 69 (2006)

    Article  Google Scholar 

  29. M. García-Martínez, I. Campos-Cantón, E. Campos-Cantón, S. Čelikovskỳ, Nonlin. Dyn. 74, 819 (2013)

    Article  Google Scholar 

  30. S.T. Welstead, T.L. Cromer, Comput. Graphics 13, 539 (1989)

    Article  Google Scholar 

  31. P. Amil, C. Cabeza, C. Masoller, A.C. Martí, Circuits and Systems II: Express Briefs, IEEE Trans. 62, 681 (2015)

    Google Scholar 

  32. P. Amil, C. Cabeza, C. Masoller, A.C. Martí, Chaos 25, 043112 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo C. Marti.

Electronic supplementary material

Supplementary Information

MP4 file

Supplementary Information

MP4 file

Supplementary Information

MP4 file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

L’Her, A., Amil, P., Rubido, N. et al. Electronically-implemented coupled logistic maps. Eur. Phys. J. B 89, 81 (2016). https://doi.org/10.1140/epjb/e2016-60986-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-60986-8

Keywords

Navigation