Skip to main content
Log in

Dielectric properties of multiferroic CuCrO2

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We propose a microscopic model in order to study the multiferroic properties of the triangular compound CuCrO2 taking into account antiferromagnetic interactions in the ab plane, spin-phonon interactions and quadratic magnetoelectric (ME) coupling. The temperature and magnetic field dependence of the polarization P ab and dielectric constant ϵ ab is calculated. P ab increases when h is parallel to its direction and decreases when h is perpendicular to it. We show that ϵ ab has a kink near the magnetic phase transition T N = 24 K which disappears with increasing of an external magnetic field h ab . This behavior is an evidence for a strong ME coupling and in qualitative agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Seki, Y. Onose, Y. Tokura, Phys. Rev. Lett. 101, 067204 (2008)

    Article  ADS  Google Scholar 

  2. T. Kimura, J.C. Lashley, A.P. Ramirez, Phys. Rev. B 73, 220401(R) (2006)

    Article  ADS  Google Scholar 

  3. M. Poienar, V. Hardy, B. Kundys, K. Singh, A. Maignan, F. Damay, C. Martin, J. Solid State Chem. 185, 56 (2012)

    Article  ADS  Google Scholar 

  4. M. Frontzek, J.T. Haraldsen, A. Podlesnyak, M. Matsuda et al., Phys. Rev. B 84, 094448 (2011)

    Article  ADS  Google Scholar 

  5. R.S. Fishman, J. Phys.: Condens. Matter 23, 366002 (2011)

    Google Scholar 

  6. S. Seki, Y. Yamasaki, Y. Shiomi, S. Iguchi, Y. Onose, Y. Tokura, Phys. Rev. B 75, 100403(R) (2007)

    Article  ADS  Google Scholar 

  7. T. Nakajima, S. Mitsuda, S. Kanetsuki, K. Tanaka, K. Fujii, N. Terada, M. Soda, M. Matsuura, K. Hirota, J. Phys. Soc. Jpn. 77, 052401 (2008)

    Google Scholar 

  8. M. Soda, K. Kimura, T. Kimura et al., Phys. Rev. B 81, 100406(R) (2010)

    Article  ADS  Google Scholar 

  9. M. Soda, K. Kimura, T. Kimura et al., J. Phys. Soc. Jpn. 78, 124703 (2009)

    Article  ADS  Google Scholar 

  10. H. Katsura, N. Nagaosa, A.V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005)

    Article  ADS  Google Scholar 

  11. T. Arima, J. Phys. Soc. Jpn. 76, 073702 (2007)

    Article  ADS  Google Scholar 

  12. Y. Tanaka, N. Terada, T. Nakajima et al., Phys. Rev. Lett. 109, 127205 (2012)

    Article  ADS  Google Scholar 

  13. T.A. Kaplan, S.D. Mahanti, Phys. Rev. B 83, 174432 (2011)

    Article  ADS  Google Scholar 

  14. H.J. Xiang, E.J. Kan, Y. Zhang, M.-K. Whangbo, X.G. Gong, Phys. Rev. Lett. 107, 157202 (2011)

    Article  ADS  Google Scholar 

  15. A. Albaalbaky, Y. Kvashnin, D. Ledue, R. Patte, R. Fresard, Phys. Rev. B 96, 064431 (2017)

    Article  ADS  Google Scholar 

  16. N.V. Ter-Oganessian, Ferroelectrics 438, 101 (2012)

    Article  Google Scholar 

  17. S.A. Pikin, Cryst. Rep. 59, 542 (2014)

    Article  Google Scholar 

  18. K. Kimura, H. Nakamura, K. Ohgushi, T. Kimura, Phys. Rev. B 78 140401(R) (2008)

    Article  ADS  Google Scholar 

  19. M. Poienar, F. Damay, C. Martin, J. Robert, S. Petit, Phys. Rev. B 81, 104411 (2010)

    Article  ADS  Google Scholar 

  20. K. Kimura, T. Otani, H. Nakamura, Y. Wakabayashi, T. Kimura, J. Phys. Soc. Jpn. 78, 113710 (2009)

    Article  ADS  Google Scholar 

  21. O. Aktas, G. Quiron, T. Otani, T. Kimura, Phys. Rev. B 88, 224104 (2013)

    Article  ADS  Google Scholar 

  22. G. Quiron, M.J. Tagore, M.L. Plunner, O.A. Petrenko, Phys. Rev. B 77, 094111 (2008)

    Article  ADS  Google Scholar 

  23. A. Maignan, C. Martin, K. Singh, Ch. Simon, O.I. Lebedev, S. Turner, J. Solid State Chem. 195, 41 (2012)

    Article  ADS  Google Scholar 

  24. K. Singh, B. Kundys, M. Poienar, C. Simon, J. Phys.: Condens. Matter 22, 445901 (2010)

    ADS  Google Scholar 

  25. K. Kimura, H. Nakamura, S. Kimura, M. Hagiwara, T. Kimura, Phys. Rev. Lett. 103, 107201 (2009)

    Article  ADS  Google Scholar 

  26. E. Mun, M. Frontzek, A. Podlesnyak, G. Ehlers, S. Barilo, S.V. Shiryaev, V.S. Zapf, Phys. Rev. B 89, 05441 (2014)

    Google Scholar 

  27. K. Park, J. Oh, J.C. Leiner et al., Phys. Rev. B 94, 104421 (2016)

    Article  ADS  Google Scholar 

  28. D. Bansal, J.L. Niedziela, A.F. May et al., Phys. Rev. B 95, 05436 (2017)

    Article  Google Scholar 

  29. V.G. Vaks, Introduction to the microscopic theory of ferroelectrics (Nauka, Moscow, 1973), p. 158

  30. Yu.A. Tserkovnikov, Teor. Mat. Fiz. 7, 250 (1971)

    Article  Google Scholar 

  31. O. Aktas, K.D. Truong, T. Otani et al., J. Phys.: Condens. Matter 24, 036003 (2012)

    ADS  Google Scholar 

  32. A.T. Apostolov, I.N. Apostolova, J.M. Wesselinowa, Mod. Phys. Lett. B 31, 1750009 (2017)

    Article  ADS  Google Scholar 

  33. D.C. Ling, C.W. Chiang, Y.F. Wang, Y.J. Lee, P.H. Yeh, J. Appl. Phys. 109, 07D908 (2011)

    Article  Google Scholar 

  34. T. Kimura, J.C. Lashley, A.P. Ramirez, Phys. Rev. B 73, 220401(R) (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia M. Wesselinowa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apostolov, A.T., Apostolova, I.N., Trimper, S. et al. Dielectric properties of multiferroic CuCrO2 . Eur. Phys. J. B 90, 236 (2017). https://doi.org/10.1140/epjb/e2017-80461-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80461-4

Keywords

Navigation