Skip to main content
Log in

Spherical quantum dot in Kratzer confining potential: study of linear and nonlinear optical absorption coefficients and refractive index changes

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Linear and nonlinear optical absorption coefficients (ACs) and refractive index changes (RICs) between the ground and the excited states of the GaAs spherical quantum dot (QD) under the effect of Kratzer confining potential and laser field have been investigated theoretically. The electronic energy levels and their corresponding wave functions are obtained by solving Schrödinger equation using finite difference method within the effective mass approximation. The dependency of energies, probability densities, dipole matrix elements on the Kratzer potential parameters and on the size of QD are investigated. The use of density matrix formalism is made to study the variations in linear, nonlinear ACs and RICs with the energy and intensity of the laser field. Also the effect of variation of the QD size and Kratzer potential parameters on linear, nonlinear ACs and RICs are studied.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Vasudevan, R.R. Gaddam, A. Trinchi, I. Cole, J. Alloys Compd. 636, 395 (2015)

    Article  Google Scholar 

  2. A.D. Yoffe, Adv. Phys. 50, 1 (2010)

    Article  ADS  Google Scholar 

  3. E. Feddi, A. Talbi, M.E. Mora-Ramos, M. El Haouari, F. Dujardine, C.A. Duque, Phys. B: Condens. Matter 524, 64 (2017)

    Article  ADS  Google Scholar 

  4. C.V. Nguyen, N.N. Hieu, D. Muoi, C.A. Duque, E. Feddi, H.V. Nguyen, Le T.T. Phuong, B.D. Hoi, H.V. Phuc, J. Appl. Phys. 123, 034301 (2018)

    Article  ADS  Google Scholar 

  5. R. Khordad, H. Bahramiyan, Phys. E: Low Dimens. Syst. Nanostruct. 66, 107 (2015)

    Article  ADS  Google Scholar 

  6. T. Chakraborty, Nanoscopic quantum rings: a new perspective, in Advance in Solid State Physics, edited by B. Kramer (Springer, Berlin, Heidelberg, 2003), Vol. 43, pp. 79–94

  7. B. Cakir, Y. Yakar, A. Ozmen, M.O. Sezer, M. Sahin, Superlattices Microstruct. 47, 556 (2010)

    Article  ADS  Google Scholar 

  8. I. Karabulut, U. Atav, H. Safak, M. Tomak, Eur. Phys. J. B 55, 283 (2007)

    Article  ADS  Google Scholar 

  9. K.M. Gambaryan, V.M. Aroutiounian, V.G. Harutyunyan, O. Marquardt, P.G. Soukiassian, Appl. Phys. Lett. 100, 033104(1–4) (2012)

    Article  ADS  Google Scholar 

  10. J. Owen, L. Brus, J. Am. Chem. Soc. 139, 10939 (2017)

    Article  Google Scholar 

  11. W. Zhou, J.J. Coleman, Curr. Opin. Solid State Mater. Sci. 20, 352 (2016)

    Article  ADS  Google Scholar 

  12. N. Ben Afkir, E. Feddi, F. Dujardin, M. Zazoui, J. Meziane, Phys. B: Condens. Matter 534, 10 (2018)

    Article  ADS  Google Scholar 

  13. D. Bera, L. Qian, T.-K. Tseng, P.H. Holloway, Materials 3, 2260 (2010)

    Article  ADS  Google Scholar 

  14. B. Cakir, Y. Yakar, A Ozmen, Phys. B: Condens. Matter 458, 138 (2015)

    Article  ADS  Google Scholar 

  15. A. Galiautdinov, Phys. Lett. A 382, 72 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  16. M.R.K. Vahdani, G. Rezaei, Phys. Lett. A 374, 637 (2010)

    Article  ADS  Google Scholar 

  17. R. Khordad, Superlattices Microstruct. 54, 7 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. S. Sakiroglu, E. Kasapoglu, R.L. Restrepo, C.A. Duque, I. Sökm, Phys. Status Solidi B 254, 1600457(1–6) (2017)

    Article  ADS  Google Scholar 

  19. J. García-Ravelo, A. Menéndez, J. García-Martínez, A. Schulze-Halberg, Phys. Lett. A 378, 2038 (2014)

    Article  ADS  Google Scholar 

  20. V. Prasad, P. Silotia, Phys. Lett. A 375, 3910 (2011)

    Article  ADS  Google Scholar 

  21. H. Hassanabadi, A.A. Rajabi, Phys. Lett. A 373, 679 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Dehyar, G. Rezaei, A. Zamani, Phys. E 84, 175 (2016)

    Article  Google Scholar 

  23. D.B. Hayrapetyan, S.M. Amirkhanyan, E.M. Kazaryan, H.A. Sarkisyan, Phys. E: Low Dimens. Syst. Nanostruct. 84, 367 (2016)

    Article  ADS  Google Scholar 

  24. A. Kratzer, Zeit. Phys. 3, 289 (1920)

    Article  ADS  Google Scholar 

  25. E. Fues, Ann. Phys. (Paris) 80, 281 (1926)

    ADS  Google Scholar 

  26. D.A. Nugraha, A. Suparmi, C. Cari, B.N. Pratiwi, J. Phys.: Conf. Ser. 820, 012014 (2017)

    Google Scholar 

  27. L. Fortunato, A. Vitturi, J. Phys. G: Nucl. Part. Phys. 29, 1341 (2003)

    Article  ADS  Google Scholar 

  28. L. Fortunato, A. Vitturi, J. Phys. G: Nucl. Part. Phys. 30, 627 (2004)

    Article  ADS  Google Scholar 

  29. D. Bonatsos, P.E. Georgoudis, N. Minkov, D. Petrellis, C. Quesne, Phys. Rev. C 88, 034316 (2013)

    Article  ADS  Google Scholar 

  30. N. Soheibi, M. Hamzavi, M. Eshghi, S.M. Ikhdair, Eur. Phys. J. B 90, 212 (2017)

    Article  ADS  Google Scholar 

  31. S.A. Najafizade, H. Hassanabadi, S. Zarrinkamar, Chin. Phys. B 25, 040301 (2016)

    Article  Google Scholar 

  32. J.M. Romero-Enrique, A.O. Parry, M.J. Greenall, Phys. Rev. E 69, 061604 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  33. G. Van Hooydonk, Spectrochim. Acta Part A 56, 2273 (2000)

    Article  ADS  Google Scholar 

  34. C. Berkdemir, A. Berkdemir, J. Han, Chem. Phys. Lett. 417, 326 (2006)

    Article  ADS  Google Scholar 

  35. B. Cakir, Y. Yakar, A. Ozmen, Phys. B: Condens. Matter 510, 86 (2017)

    Article  ADS  Google Scholar 

  36. B. Cakir, Y. Yakar, A. Ozmen, Chem. Phys. Lett. 684, 250 (2017)

    Article  ADS  Google Scholar 

  37. A. Zamani, T. Azargoshasb, E. Niknam, E. Mohamma- dhosseini, Optik 142, 273 (2017)

    Article  ADS  Google Scholar 

  38. R.E. Acosta, A.L. Morales, C.M. Duque, M.E. Mora-Ramos, C.A. Duque, Phys. Status Solidi B 253, 744 (2016)

    Article  ADS  Google Scholar 

  39. K. Li, K. Guo, L. Liang, Physica B 502, 146 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  40. M.G. Barseghyan, A.A. Kirakosyan, C.A. Duque, Eur. Phys. J. B 72, 521 (2009)

    Article  ADS  Google Scholar 

  41. I. Karabulut, M.E. Mora-Ramos, C.A. Duque, J. Lumin, 131, 1502 (2011)

    Article  Google Scholar 

  42. M. Santhi, A. John Peter, C.K. Yoo, Superlattices Microstruct. 52, 234 (2012)

    Article  ADS  Google Scholar 

  43. R. Khordad, S.K. Khaneghah, M. Masoumi, Superlattices Microstruct. 47, 538 (2010)

    Article  ADS  Google Scholar 

  44. J.L. Polleux, C. Rumelhard, in 8th IEEE International Symposium on High Performance Electron Devices for Microwave and Optoelectronic Applications (Cat. No.00TH8534), Glasgow, 2000, pp. 167–172

  45. J.L. Polleux, F. Moutier, A.L. Billabert, C. Rumelhard, E. Sönmez, H. Schumacher, in 11th GAAS Symposium – Munich, 2003, pp. 231–234

  46. A.A. Babaei-Brojeny, M. Mokari, Phys. Scr. 84, 045003 (2011)

    Article  ADS  Google Scholar 

  47. O. Bayrak, I. Boztosun, H. Ciftci, Int. J. Quantum Chem. 107, 540 (2007)

    Article  ADS  Google Scholar 

  48. I.I. Goldman, V.D. Krivchenkov, Problem in Quantum Mechanics (Dover Publishers, NY, 2010), p. 45

  49. G.V.B. de Souza, A.B. Alfonso, Physica E 66, 128 (2015)

    Article  ADS  Google Scholar 

  50. K. Batra, V. Prasad, Rev. Mex. Fis. 64, 7 (2018)

    Article  Google Scholar 

  51. K. Batra, V. Prasad, Physica E 61, 171 (2014)

    Article  ADS  Google Scholar 

  52. C.J. Zhang, K.X. Guo, Z.E. Lu, Physica E 36, 92 (2007)

    Article  ADS  Google Scholar 

  53. J. Huang, Libin, Phys. Lett. A 372, 4323 (2008)

    Article  ADS  Google Scholar 

  54. M.R.K. Vahdani, G. Rezaei, Phys. Lett. A 373, 3079 (2009)

    Article  ADS  Google Scholar 

  55. M.R.K. Vahdani, G. Rezaei, Phys. Lett. A 374, 637 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kriti Batra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batra, K., Prasad, V. Spherical quantum dot in Kratzer confining potential: study of linear and nonlinear optical absorption coefficients and refractive index changes. Eur. Phys. J. B 91, 298 (2018). https://doi.org/10.1140/epjb/e2018-90432-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90432-x

Keywords

Navigation