Skip to main content
Log in

Reaction coordinates in complex systems-a perspective

  • Topical Review - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In molecular simulations, the identification of suitable reaction coordinates is central to both the analysis and sampling of transitions between metastable states in complex systems. If sufficient simulation data are available, a number of methods have been developed to reduce the vast amount of high-dimensional data to a small number of essential degrees of freedom representing the reaction coordinate. Likewise, if the reaction coordinate is known, a variety of approaches have been proposed to enhance the sampling along the important degrees of freedom. Often, however, neither one nor the other is available. One of the key questions is therefore, how to construct reaction coordinates and evaluate their validity. Another challenges arises from the physical interpretation of reaction coordinates, which is often addressed by correlating physically meaningful parameters with conceptually well-defined but abstract reaction coordinates. Furthermore, machine learning based methods are becoming more and more applicable also to the reaction coordinate problem. This perspective highlights central aspects in the identification and evaluation of reaction coordinates and discusses recent ideas regarding automated computational frameworks to combine the optimization of reaction coordinates and enhanced sampling.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. Jung, W. Nishima, M. Daniels, G. Bascom, C. Kobayashi, A. Adedoyin, M. Wall, A. Lappala, D. Phillips, W. Fischer, C. Tung, T. Schlick, Y. Sugita, K.Y. Sanbonmatsu, J. Comput. Chem. 40(21), 1919 (2019)

    Article  Google Scholar 

  2. J. Jung, C. Kobayashi, K. Kasahara, C. Tan, A. Kuroda, K. Minami, S. Ishiduki, T. Nishiki, H. Inoue, Y. Ishikawa, M. Feig, Y. Sugita, J. Comput. Chem. 42(4), 231 (2021)

    Article  Google Scholar 

  3. J. Behler, J. Chem. Phys. 145(17), 170901 (2016)

    Article  ADS  Google Scholar 

  4. V.L. Deringer, M.A. Caro, G. Csányi, Adv. Mater. 31(46), 1902765 (2019)

    Article  Google Scholar 

  5. Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, S.P. Ong, J. Phys. Chem. A 124(4), 731 (2020)

    Article  Google Scholar 

  6. F. Noé, A. Tkatchenko, K.R. Müller, C. Clementi, Annu. Rev. Phys. Chem. 71(1), 361 (2020)

    Article  Google Scholar 

  7. M. Ceriotti, C. Clementi, O. Anatole von Lilienfeld, J. Chem. Phys. 154(16), 160401 (2021)

    Article  ADS  Google Scholar 

  8. J. Behler, G. Csányi, Eur. Phys. J. B 94(7), 142 (2021)

    Article  ADS  Google Scholar 

  9. B. Peters, Annu. Rev. Phys. Chem. 67(1), 669 (2016)

    Article  ADS  Google Scholar 

  10. P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62(2), 251 (1990)

    Article  ADS  Google Scholar 

  11. D.G. Truhlar, B.C. Garrett, S.J. Klippenstein, J. Phys. Chem. 100(31), 12771 (1996)

    Article  Google Scholar 

  12. E. Vanden-Eijnden, F.A. Tal, J. Chem. Phys. 123(18), 184103 (2005)

    Article  ADS  Google Scholar 

  13. A.F. Voter, Phys. Rev. B 57, R13985 (1998)

    Article  ADS  Google Scholar 

  14. M.R. Sørensen, A.F. Voter, J. Chem. Phys. 112(21), 9599 (2000)

    Article  ADS  Google Scholar 

  15. A.F. Voter, F. Montalenti, T.C. Germann, Annu. Rev. Mater. Res. 32, 321 (2002)

    Article  Google Scholar 

  16. D. Perez, B.P. Uberuaga, Y. Shim, J.G. Amar, A.F. Voter, (Elsevier, 2009), pp. 79–98

  17. R.J. Zamora, D. Perez, E. Martinez, B.P. Uberuaga, A.F. Voter, in Handbook of Materials Modeling. ed. by W. Andreoni, S. Yip (Springer International Publishing, Cham, 2020), pp. 1–28

  18. B.P. Uberuaga, D. Perez, A.F. Voter, in Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile, vol. 284, ed. by S. Shankar, R. Muller, T. Dunning, G.H. Chen (Springer International Publishing, Cham, 2021), pp. 137–156

  19. Y. Sugita, Y. Okamoto, Chem. Phys. Lett. 314(1–2), 141 (1999)

    Article  ADS  Google Scholar 

  20. C. Dellago, P.G. Bolhuis, F.S. Csajka, D. Chandler, J. Chem. Phys. 108(5), 1964 (1998)

    Article  ADS  Google Scholar 

  21. C. Dellago, P.G. Bolhuis, D. Chandler, J. Chem. Phys. 108(22), 9236 (1998)

    Article  ADS  Google Scholar 

  22. C. Dellago, P.G. Bolhuis, P.L. Geissler, Adv. Chem. Phys. 123, 1 (2002)

    Google Scholar 

  23. P.G. Bolhuis, D. Chandler, C. Dellago, P.L. Geissler, Ann. Rev. Phys. Chem. 53(1), 291 (2002)

    Article  ADS  Google Scholar 

  24. T.S. van Erp, P.G. Bolhuis, J. Comp. Phys. 205(1), 157 (2005)

    Article  ADS  Google Scholar 

  25. T.S. van Erp, Phys. Rev. Lett. 98, 268301 (2007)

    Article  ADS  Google Scholar 

  26. P.G. Bolhuis, J. Chem. Phys. 129, 114108 (2008)

    Article  ADS  Google Scholar 

  27. R.J. Allen, P.B. Warren, P.R. ten Wolde, Phys. Rev. Lett. 94(1), 018104 (2005)

    Article  ADS  Google Scholar 

  28. R.J. Allen, D. Frenkel, P.R. ten Wolde, J. Chem. Phys. 124(2), 024102 (2006)

    Article  ADS  Google Scholar 

  29. R.J. Allen, D. Frenkel, P.R. ten Wolde, J. Chem. Phys. 124(19), 194111 (2006)

    Article  ADS  Google Scholar 

  30. R.J. Allen, C. Valeriani, P.R. Ten Wolde, J. Phys. Condens. Matter 21(46), 463102 (2009)

    Article  Google Scholar 

  31. G. Torrie, J. Valleau, J. Comput. Phys. 23(2), 187 (1977)

    Article  ADS  Google Scholar 

  32. A. Laio, M. Parrinello, Proc. Natl. Acad. Sci. USA 99, 12562 (2002)

    Article  ADS  Google Scholar 

  33. A. Laio, A. Rodriguez-Fortea, F.L. Gervasio, M. Ceccarelli, M. Parrinello, J. Phys. Chem. B 109(14), 6714 (2005)

    Article  Google Scholar 

  34. A. Laio, F.L. Gervasio, Rep. Prog. Phys. 71(12), 126601 (2008)

    Article  ADS  Google Scholar 

  35. A. Barducci, G. Bussi, M. Parrinello, Phys. Rev. Lett. 100, 020603 (2008)

    Article  ADS  Google Scholar 

  36. A.F. Voter, Phys. Rev. Lett. 78, 3908 (1997)

    Article  ADS  Google Scholar 

  37. E. Darve, D. Rodríguez-Gómez, A. Pohorille, J. Chem. Phys. 128(14), 144120 (2008)

    Article  ADS  Google Scholar 

  38. L. Rosso, P. Mináry, Z. Zhu, M.E. Tuckerman, J. Chem. Phys. 116, 4389 (2002)

    Article  ADS  Google Scholar 

  39. L. Rosso, M.E. Tuckerman, Mol. Sim. 28(1–2), 91 (2002)

    Article  Google Scholar 

  40. J.B. Abrams, M.E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)

    Article  Google Scholar 

  41. L. Maragliano, E. Vanden-Eijnden, Chem. Phys. Lett. 426(1), 168 (2006)

    Article  ADS  Google Scholar 

  42. M.A. Rohrdanz, W. Zheng, C. Clementi, Annu. Rev. Phys. Chem. 64(1), 295 (2013)

    Article  ADS  Google Scholar 

  43. P.L. Geissler, C. Dellago, D. Chandler, J. Phys. Chem. B 103(18), 3706 (1999)

    Article  Google Scholar 

  44. E. Weinan, W. Ren, E. Vanden-Eijnden, Chem. Phys. Lett. 413(1–3), 242 (2005)

  45. R.B. Best, G. Hummer, Proc. Natl. Acad. Sci. USA 102(19), 6732 (2005)

    Article  ADS  Google Scholar 

  46. A. Ma, A.R. Dinner, J. Phys. Chem. B 109(14), 6769 (2005)

    Article  Google Scholar 

  47. L. Onsager, Phys. Rev. 54(8), 554 (1938)

    Article  ADS  Google Scholar 

  48. W. Li, A. Ma, Mol. Simul. 40(10–11), 784 (2014)

    Article  Google Scholar 

  49. G. Díaz Leines, J. Rogal, J. Phys. Chem. B 122(48), 10934 (2018)

    Article  Google Scholar 

  50. F. Hooft, A. Pérez de Alba Ortíz, B. Ensing, J. Chem. Theory Comput. 17(4), 2294 (2021)

    Article  Google Scholar 

  51. B. Peters, B.L. Trout, J. Chem. Phys. 125(5), 054108 (2006)

    Article  ADS  Google Scholar 

  52. B. Peters, G.T. Beckham, B.L. Trout, J. Chem. Phys. 127, 034109 (2007)

    Article  ADS  Google Scholar 

  53. R.G. Mullen, J.E. Shea, B. Peters, J. Chem. Theory Comput. 11(6), 2421 (2015)

    Article  Google Scholar 

  54. G. Schwarz, Ann. Stat. 6, 461 (1978)

    Article  Google Scholar 

  55. B. Peters, Chem. Phys. Lett. 554, 248 (2012)

    Article  ADS  Google Scholar 

  56. J. Rogal, W. Lechner, J. Juraszek, B. Ensing, P.G. Bolhuis, J. Chem. Phys. 133, 174109 (2010)

    Article  ADS  Google Scholar 

  57. W. Lechner, J. Rogal, J. Juraszek, B. Ensing, P.G. Bolhuis, J. Chem. Phys. 133(17), 174110 (2010)

    Article  ADS  Google Scholar 

  58. E. Rosta, H.L. Woodcock, B.R. Brooks, G. Hummer, J. Comput. Chem. 30(11), 1634 (2009)

    Article  Google Scholar 

  59. D. Moroni, P.R. ten Wolde, P.G. Bolhuis, Phys. Rev. Lett. 94(23), 235703 (2005)

    Article  ADS  Google Scholar 

  60. J. Juraszek, P.G. Bolhuis, Proc. Natl. Acad. Sci. USA 103(43), 15859 (2006)

    Article  ADS  Google Scholar 

  61. M. Grünwald, C. Dellago, J. Chem. Phys. 131(16), 164116 (2009)

    Article  ADS  Google Scholar 

  62. J. Vreede, J. Juraszek, P.G. Bolhuis, Proc. Natl. Acad. Sci. USA 107(6), 2397 (2010)

    Article  ADS  Google Scholar 

  63. G.T. Beckham, B. Peters, J. Phys. Chem. Lett. 2(10), 1133 (2011)

    Article  Google Scholar 

  64. J.D. Chodera, V.S. Pande, Phys. Rev. Lett. 107(9), 098102 (2011)

    Article  ADS  Google Scholar 

  65. W. Lechner, C. Dellago, P.G. Bolhuis, Phys. Rev. Lett. 106(8), 085701 (2011)

    Article  ADS  Google Scholar 

  66. W. Lechner, C. Dellago, P.G. Bolhuis, J. Chem. Phys. 135(15), 154110 (2011)

    Article  ADS  Google Scholar 

  67. A.J. Ballard, C. Dellago, J. Phys. Chem. B 116(45), 13490 (2012)

    Article  Google Scholar 

  68. S. Jungblut, A. Singraber, C. Dellago, Mol. Phys. 111(22–23), 3527 (2013)

    Article  ADS  Google Scholar 

  69. R.G. Mullen, J.E. Shea, B. Peters, J. Chem. Theory Comput. 10(2), 659 (2014)

    Article  Google Scholar 

  70. C. Leitold, W. Lechner, C. Dellago, J. Phys. Condens. Matter 27(19), 194126 (2015)

    Article  ADS  Google Scholar 

  71. G. Menzl, M.A. Gonzalez, P. Geiger, F. Caupin, J.L.F. Abascal, C. Valeriani, C. Dellago, Proc. Natl. Acad. Sci. USA 113(48), 13582 (2016)

    Article  ADS  Google Scholar 

  72. Y. Liang, G. Díaz Leines, R. Drautz, J. Rogal, J. Chem. Phys. 152(22), 224504 (2020)

    Article  ADS  Google Scholar 

  73. J. Wang, A.L. Ferguson, Mol. Simul. 44(13–14), 1090 (2018)

    Article  Google Scholar 

  74. M. Ceriotti, J. Chem. Phys. 150(15), 150901 (2019)

    Article  ADS  Google Scholar 

  75. H. Sidky, W. Chen, A.L. Ferguson, Mol. Phys. 118(5), e1737742 (2020)

    Article  ADS  Google Scholar 

  76. A. Glielmo, B.E. Husic, A. Rodriguez, C. Clementi, F. Noé, A. Laio, Chem. Rev. p. acs.chemrev.0c01195 (2021)

  77. M.A.A. Cox, T.F. Cox, In Handbook of Data Visualization (Springer, Berlin Heidelberg, Berlin, Heidelberg, 2008), pp. 315–347

  78. B. Schölkopf, A. Smola, K.R. Müller, Neural Comput. 10(5), 1299 (1998)

    Article  Google Scholar 

  79. J.B. Tenenbaum, V. de Silva, J.C. Langford, Science 290(5500), 2319 (2000)

    Article  ADS  Google Scholar 

  80. G.A. Tribello, M. Ceriotti, M. Parrinello, Proc. Natl. Acad. Sci. USA 109(14), 5196 (2012)

    Article  ADS  Google Scholar 

  81. R.R. Coifman, I.G. Kevrekidis, S. Lafon, M. Maggioni, B. Nadler, Multiscale Model. Simul. 7(2), 842 (2008)

    Article  MathSciNet  Google Scholar 

  82. D. Branduardi, F.L. Gervasio, M. Parrinello, J. Chem. Phys. 126(5), 054103 (2007)

    Article  ADS  Google Scholar 

  83. L. Hovan, F. Comitani, F.L. Gervasio, J. Chem. Theory Comput. 15(1), 25 (2019)

    Article  Google Scholar 

  84. D. Mendels, G.M. Piccini, M. Parrinello, J. Phys. Chem. Lett. 9(11), 2776 (2018)

    Article  Google Scholar 

  85. J. Rogal, E. Schneider, M.E. Tuckerman, Phys. Rev. Lett. 123(24), 145701 (2019)

    Article  Google Scholar 

  86. M.A. Cuendet, D.T. Margul, E. Schneider, L. Vogt-Maranto, M.E. Tuckerman, J. Chem. Phys. 149(7), 072316 (2018)

    Article  ADS  Google Scholar 

  87. M.M. Sultan, V.S. Pande, J. Chem. Phys. 149(9), 094106 (2018)

    Article  ADS  Google Scholar 

  88. L. Bonati, V. Rizzi, M. Parrinello, J. Phys. Chem. Lett. 11(8), 2998 (2020)

    Article  Google Scholar 

  89. W. Chen, A.L. Ferguson, J. Comput. Chem. 39(25), 2079 (2018)

    Article  Google Scholar 

  90. W. Chen, A.R. Tan, A.L. Ferguson, J. Chem. Phys. 149(7), 072312 (2018)

    Article  ADS  Google Scholar 

  91. Z. Belkacemi, P. Gkeka, T. Leliévre, G. Stoltz (2021). arXiv:2104.11061 [physics.bio-ph]

  92. J.M.L. Ribeiro, P. Bravo, Y. Wang, P. Tiwary, J. Chem. Phys. 149(7), 072301 (2018)

    Article  ADS  Google Scholar 

  93. J.M.L. Ribeiro, P. Tiwary, J. Chem. Theory Comput. 15(1), 708 (2019)

    Article  Google Scholar 

  94. Y. Wang, J.M.L. Ribeiro, P. Tiwary, Nat. Commun. 10(1), 3573 (2019)

    Article  ADS  Google Scholar 

  95. Y. Wang, P. Tiwary, J. Chem. Phys. 152(14), 144102 (2020)

    Article  ADS  Google Scholar 

  96. G. Hummer, J. Chem. Phys. 120(2), 516 (2004)

    Article  ADS  Google Scholar 

  97. H. Jung, K. Okazaki, G. Hummer, J. Chem. Phys. 147(15), 152716 (2017)

    Article  ADS  Google Scholar 

  98. H. Jung, R. Covino, G. Hummer (2019). arXiv:1901.04595 [physics.chem-ph]

  99. H. Jung, R. Covino, A. Arjun, P.G. Bolhuis, G. Hummer (2021). arXiv:2105.06673 [physics.chem-ph]

Download references

Acknowledgements

JR acknowledges financial support from the Deutsche Forschungsgemeinschaft (DFG) through the Heisenberg Programme project 428315600.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jutta Rogal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogal, J. Reaction coordinates in complex systems-a perspective. Eur. Phys. J. B 94, 223 (2021). https://doi.org/10.1140/epjb/s10051-021-00233-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00233-5

Navigation