Skip to main content
Log in

K*0 and φ meson production in proton–nucleus interactions at \(\sqrt{s}=41.6\text{GeV}\)

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The inclusive production cross sections of the strange vector mesons K*0, K̄*0, and φ have been measured in interactions of 920 GeV protons with C, Ti, and W targets with the HERA-B detector at the HERA storage ring. Differential cross sections as a function of rapidity and transverse momentum have been measured in the central rapidity region and for transverse momenta up to pT = 3.5 GeV/c. The atomic number dependence is parametrised as σpApN*Aα, where σpN is the proton–nucleon cross section. Within the phase space accessible, α(K*0)=0.86±0.03, α(K̄*0)=0.87±0.03, and α(φ)=0.96±0.02. The total proton–nucleon cross sections, determined by extrapolating the differential measurements to full phase space, are σpN→K*0=(5.06±0.54) mb, σpN→K̄*0=(4.02±0.45) mb, and σpN→φ=(1.17±0.11) mb. For all resonances the Cronin effect is observed; compared to the measurements of Cronin et al. for K± mesons, the measured values of α for φ mesons coincide with those of K+ mesons for all transverse momenta, while the enhancement for K*0/K̄*0 mesons is smaller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.Y. Wong, Introduction to High Energy Heavy-Ion Collisions (World Scientific, Singapore, 1994) pp. 516

  2. H. Satz, Nucl. Phys. Proc. Suppl. 94, 204 (2001)

    Article  ADS  Google Scholar 

  3. J. Letessier, J. Rafelski, Int. J. Mod. Phys. E 9, 107 (2000)

    ADS  Google Scholar 

  4. C. Markert et al., hep-ph/0206260 (2002)

  5. J. Rafelski et al., Phys. Rev. C 64, 054907 (2001)

    Article  ADS  Google Scholar 

  6. C. Markert, J. Phys. G: Nucl. Part. Phys. 31, S169 (2005)

    Article  ADS  Google Scholar 

  7. P. Jacobs, X.N. Wang, Prog. Part. Nucl. Phys. 54, 443 (2005)

    Article  ADS  Google Scholar 

  8. H. Zhang, nucl-ex/0403010 (2004)

  9. J. Adams et al., Phys. Rev. C 71, 064902 (2005)

    Article  ADS  Google Scholar 

  10. C. Adler et al., Phys. Rev. C 65, 041901 (2002)

    Article  ADS  Google Scholar 

  11. J. Adams et. al., Phys. Lett. B 612, 181 (2005)

    Article  ADS  Google Scholar 

  12. S.S. Adler et al., Phys. Rev. C 72, 014903 (2005)

    Article  ADS  Google Scholar 

  13. S.S. Adler et al., Eur. Phys. J. C 43, 317 (2005)

    Article  Google Scholar 

  14. D. Pal, Nucl. Phys. A 774, 489 (2006)

    Article  ADS  Google Scholar 

  15. S.L. Blyth, nucl-ex/0608019 (2006)

  16. Y.G. Ma, nucl-ex/0609020 (2006)

  17. H.K. Wöhri et al., Eur. Phys. J. C 43, 407 (2005)

    Article  ADS  Google Scholar 

  18. R. Bellwied, J. Phys. G: Nucl. Part. Phys. 31, S675 (2005)

    Article  ADS  Google Scholar 

  19. X. Cai, J. Phys. G: Nucl. Part. Phys. 31, S1015 (2005)

    Article  ADS  Google Scholar 

  20. J. Cronin et al., Phys. Rev. D 11, 3105 (1975)

    Article  ADS  Google Scholar 

  21. J. Cronin et al., Phys. Rev. Lett. 38, 670 (1977)

    Article  ADS  Google Scholar 

  22. A. Accardi, Acta Phys. Hung. A 22, 289 (2005)

    Article  Google Scholar 

  23. A. Accardi, Eur. Phys. J. C 43, 121 (2005)

    Article  ADS  Google Scholar 

  24. R.C. Hwa, C.B. Yang, Phys. Rev. Lett. 93, 082302 (2004)

    Article  ADS  Google Scholar 

  25. B.Z. Kopeliovich et al., Phys. Rev. Lett. 88, 232303 (2002)

    Article  ADS  Google Scholar 

  26. K. Ehret et al., Nucl. Instrum. Methods A 446, 190 (2000)

    Article  ADS  Google Scholar 

  27. C. Bauer et al., Nucl. Instrum. Methods A 501, 39 (2003)

    Article  ADS  Google Scholar 

  28. H. Albrecht et al., Nucl. Instrum. Methods A 555, 319 (2005)

    ADS  Google Scholar 

  29. H. Albrecht et al., Nucl. Instrum. Methods A 541, 610 (2005)

    Article  ADS  Google Scholar 

  30. I. Ariño et al., Nucl. Instrum. Methods A 516, 445 (2004)

    Article  ADS  Google Scholar 

  31. G. Avoni et al., Nucl. Instrum. Methods A 461, 332 (2001)

    Article  ADS  Google Scholar 

  32. I. Abt et al., Phys. Lett. B 596, 173 (2004)

    Article  ADS  Google Scholar 

  33. I. Abt et al., Luminosity determination at HERA-B, to be published

  34. I. Abt et al., Nucl. Instrum. Methods A 490, 546 (2002)

    Article  Google Scholar 

  35. M. Symalla, PhD thesis, University of Dortmund, DESY-THESIS-2004-020 (2004)

  36. C. van Eldik, PhD thesis, University of Dortmund, DESY-THESIS-2004-019 (2004)

  37. J.D. Jackson, Nuovo Cim. 34, 1644 (1964)

    Google Scholar 

  38. S. Eidelman et al., Phys. Lett. B 592, 1 (2004)

    Article  ADS  Google Scholar 

  39. M. Aguilar-Benitez et al., Z. Phys. C 50, 405 (1991)

    Article  Google Scholar 

  40. P. Granet et al., Nucl. Phys. B 140, 389 (1978)

    Article  ADS  Google Scholar 

  41. H. Pi, Comput. Phys. Commun. 71, 173 (1992)

    Article  ADS  Google Scholar 

  42. R. Brun et al., GEANT3, CERN-DD-EE-84-1 (1987)

  43. H. Albrecht et al., Z. Phys. C 61, 1 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  44. R. Pernack, PhD thesis, University of Rostock (2004)

  45. R.P. Feynman, Phys. Rev. Lett. 23, 1415 (1969)

    Article  ADS  Google Scholar 

  46. W.M. Geist et al., Phys. Rep. 197, 263 (1990)

    Article  ADS  Google Scholar 

  47. A. Breakstone et al., Phys. Lett. B 135, 510 (1984)

    Article  ADS  Google Scholar 

  48. A. Breakstone et al., Z. Phys. C 27, 205 (1985)

    Article  ADS  Google Scholar 

  49. V.V. Abramov et al., Sov. J. Nucl. Phys. 41, 445 (1985)

    Google Scholar 

  50. X.N. Wang, M. Gyulassy, Phys. Rev. D 44, 3501 (1991)

    Article  ADS  Google Scholar 

  51. W.M. Geist et al., Nucl. Phys. A 525, 143c (1991)

    ADS  Google Scholar 

  52. V. Blobel et al., Phys. Lett. B 48, 73 (1974)

    Article  ADS  Google Scholar 

  53. K. Bockmann et al., Nucl. Phys. B 166, 284 (1979)

    Article  ADS  Google Scholar 

  54. H. Kichimi et al., Lett. Nuovo Cimento 24, 129 (1979)

    Google Scholar 

  55. D. Drijard et al., Z. Phys. C 9, 293 (1981)

    Article  ADS  Google Scholar 

  56. D. Brick et al., Phys. Rev. D 25, 2248 (1982)

    Article  ADS  Google Scholar 

  57. T. Aziz et al., Z. Phys. C 30, 381 (1986)

    Article  ADS  Google Scholar 

  58. M.Y. Bogolyubsky et al., IFVE-89-5 (1988)

  59. T. Sammer, PhD thesis, Munich (2001)

  60. S. Kartik, PhD thesis, Indiana University (1991)

  61. C. Daum et al., Nucl. Phys. B 186, 205 (1981)

    Article  ADS  Google Scholar 

  62. V. Blobel et al., Phys. Lett. B 59, 88 (1975)

    Article  ADS  Google Scholar 

  63. Y.M. Antipov et al., Phys. Lett. B 110, 326 (1982)

    Article  ADS  Google Scholar 

  64. K.J. Anderson et al., Phys. Rev. Lett. 37, 799 (1976)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. van Eldik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abt, I., Adams, M., Agari, M. et al. K*0 and φ meson production in proton–nucleus interactions at \(\sqrt{s}=41.6\text{GeV}\) . Eur. Phys. J. C 50, 315–328 (2007). https://doi.org/10.1140/epjc/s10052-007-0237-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-007-0237-3

Keywords

Navigation