Skip to main content
Log in

Low-energy ππ and πK scatterings revisited in three-flavour resummed chiral perturbation theory

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Chiral symmetry breaking may exhibit significantly different patterns in two chiral limits: Nf=2 massless flavours (mu=md=0, ms physical) and Nf=3 massless flavours (mu=md=ms=0). Such a difference may arise due to vacuum fluctuations of ss̄ pairs related to the violation of the Zweig rule in the scalar sector, and it could yield numerical competition between contributions counted as leading and next-to-leading order in the chiral expansions of the observables. We recall and extend resummed chiral perturbation theory (ReχPT), a framework that we introduced previously to deal with such instabilities: it requires a more careful definition of the relevant observables and their one-loop chiral expansions. We analyse the amplitudes for low-energy ππ and πK scatterings within ReχPT, which we match in subthreshold regions with dispersive representations obtained from the solutions of the Roy and Roy–Steiner equations. Using a frequentist approach, we constrain the quark mass ratio as well as the quark condensate and the pseudoscalar decay constant in the Nf=3 chiral limit. The results mildly favour significant contributions of vacuum fluctuations suppressing the Nf=3 quark condensate compared to its Nf=2 counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Descotes-Genon, L. Girlanda, J. Stern, JHEP 0001, 041 (2000) [hep-ph/9910537]

    Article  ADS  Google Scholar 

  2. BNL-E865 Collaboration, S. Pislak et al., Phys. Rev. Lett. 87, 221801 (2001) [hep-ex/0106071]

    Article  ADS  Google Scholar 

  3. BNL-E865 Collaboration, Phys. Rev. D 67, 072004 (2003) [hep-ex/0301040]

    Article  Google Scholar 

  4. B. Ananthanarayan, G. Colangelo, J. Gasser, H. Leutwyler, Phys. Rep. 353, 207 (2001) [hep-ph/0005297]

    Article  MATH  ADS  Google Scholar 

  5. S. Descotes-Genon, N.H. Fuchs, L. Girlanda, J. Stern, Eur. Phys. J. C 24, 469 (2002) [hep-ph/0112088]

    Article  Google Scholar 

  6. G. Colangelo, J. Gasser, H. Leutwyler, Phys. Rev. Lett. 86, 5008 (2001) [hep-ph/0103063]

    Article  ADS  Google Scholar 

  7. J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  8. NA48 Collaboration, L. Masetti, Talk at the 33rd International Conference on High Energy Physics (ICHEP 06), hep-ex/0610071

  9. L. Del Debbio, L. Giusti, M. Luscher, R. Petronzio, N. Tantalo, hep-lat/0610059

  10. L. Del Debbio, L. Giusti, M. Luscher, R. Petronzio, N. Tantalo, hep-lat/0701009

  11. D. Becirevic, P. Boucaud, V. Lubicz, G. Martinelli, F. Mescia, S. Simula, C. Tarantino, Phys. Rev. D 74, 034501 (2006) [hep-lat/0605006]

    Article  ADS  Google Scholar 

  12. ETM Collaboration, P. Boucaud et al., hep-lat/0701012

  13. J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 465 (1985)

    Article  ADS  Google Scholar 

  14. P. Büttiker, S. Descotes-Genon, B. Moussallam, Eur. Phys. J. C 33, 409 (2004) [hep-ph/0310283]

    Article  ADS  Google Scholar 

  15. S. Descotes-Genon, L. Girlanda, J. Stern, Eur. Phys. J. C 27, 115 (2003) [hep-ph/0207337]

    ADS  Google Scholar 

  16. S. Descotes-Genon, N.H. Fuchs, L. Girlanda, J. Stern, Eur. Phys. J. C 34, 201 (2004) [hep-ph/0311120]

    Article  ADS  Google Scholar 

  17. A. Hocker, H. Lacker, S. Laplace, F. Le Diberder, Eur. Phys. J. C 21, 225 (2001) [hep-ph/0104062]

    Article  ADS  Google Scholar 

  18. W.J. Metzger, Statistical Methods in Data Analysis, http://www.hef.kun.nl/∼wes/stat_course/statist.pdf

  19. F. James, Statistical Methods in Experimental Physics, (World Scientific, Singapore, 2006)

  20. N.H. Fuchs, H. Sazdjian, J. Stern, Phys. Lett. B 238, 380 (1990)

    Article  ADS  Google Scholar 

  21. N.H. Fuchs, Phys. Lett. B 269, 183 (1991)

    Article  ADS  Google Scholar 

  22. N.H. Fuchs, Phys. Rev. D 47, 3814 (1993) [hep-ph/9301244]

    Article  ADS  Google Scholar 

  23. M. Knecht, B. Moussallam, J. Stern, N.H. Fuchs, Nucl. Phys. B 457, 513 (1995) [hep-ph/9507319]

    Article  ADS  Google Scholar 

  24. B. Moussallam, Eur. Phys. J. C 14, 111 (2000) [hep-ph/9909292]

    Article  ADS  Google Scholar 

  25. B. Moussallam, JHEP 0008, 005 (2000) [hep-ph/0005245]

    Article  ADS  Google Scholar 

  26. S. Descotes-Genon, JHEP 0103, 002 (2001) [hep-ph/0012221]

    Article  ADS  Google Scholar 

  27. J. Bijnens, P. Dhonte, JHEP 0310, 061 (2003) [hep-ph/0307044]

    Article  ADS  Google Scholar 

  28. J. Bijnens, P. Dhonte, P. Talavera, JHEP 0401, 050 (2004) [hep-ph/0401039]

    Article  ADS  Google Scholar 

  29. J. Bijnens, P. Dhonte, P. Talavera, JHEP 0405, 036 (2004) [hep-ph/0404150]

    Article  ADS  Google Scholar 

  30. J. Bijnens, Prog. Part. Nucl. Phys. 58, 521 (2007) [hep-ph/0604043]

    Article  ADS  Google Scholar 

  31. G. Amoros, J. Bijnens, P. Talavera, Nucl. Phys. B 568, 319 (2000) [hep-ph/9907264]

    Article  ADS  Google Scholar 

  32. G. Amoros, Nucl. Phys. B 602, 87 (2001) [hep-ph/0101127]

    Article  ADS  Google Scholar 

  33. J. Bijnens, P. Talavera, Nucl. Phys. B 669, 341 (2003) [hep-ph/0303103]

    Article  ADS  Google Scholar 

  34. S. Descotes-Genon, J. Stern, Phys. Lett. B 488, 274 (2000) [hep-ph/0007082]

    Article  ADS  Google Scholar 

  35. V. Bernard, N. Kaiser, U.G. Meissner, Phys. Rev. D 43, 2757 (1991)

    Article  ADS  Google Scholar 

  36. A. Manohar, H. Georgi, Nucl. Phys. B 234, 189 (1984)

    Article  ADS  Google Scholar 

  37. H. Georgi, Phys. Lett. B 298, 187 (1993) [hep-ph/9207278]

    Article  ADS  Google Scholar 

  38. CKMfitter Group, J. Charles et al., Eur. Phys. J. C 41, 1 (2005) [hep-ph/0406184]

    Article  ADS  Google Scholar 

  39. J. Stern, hep-ph/9801282

  40. S. Descotes-Genon, J. Stern, Phys. Rev. D 62, 054011 (2000) [hep-ph/9912234]

    Article  ADS  Google Scholar 

  41. K. Kampf, B. Moussallam, Eur. Phys. J. C 47, 723 (2006) [hep-ph/0604125]

    Article  ADS  Google Scholar 

  42. G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B 321, 311 (1989)

    Article  ADS  Google Scholar 

  43. G. Amoros, J. Bijnens, P. Talavera, Phys. Lett. B 480, 71 (2000) [hep-ph/9912398]

    Article  ADS  Google Scholar 

  44. G. Amoros, Nucl. Phys. B 585, 293 (2000) [hep-ph/0003258]

    Article  ADS  Google Scholar 

  45. G. Amoros, Nucl. Phys. B 598, 665 (2001) [Erratum]

    Article  ADS  Google Scholar 

  46. MILC Collaboration, C. Bernard et al., hep-lat/0609053

  47. M. Creutz, hep-lat/0603020

  48. M. Creutz, hep-lat/0701018

  49. C. Bernard, M. Golterman, Y. Shamir, S.R. Sharpe, hep-lat/0603027

  50. S. Durr, PoS LAT2005, 021 (2006) [hep-lat/0509026]

    MathSciNet  Google Scholar 

  51. S.R. Sharpe, PoS LAT2006, 022 (2006) [hep-lat/0610094]

    Google Scholar 

  52. S.R. Sharpe, R.S. Van de Water, Phys. Rev. D 71, 114505 (2005) [hep-lat/0409018]

    Article  ADS  Google Scholar 

  53. J.W. Chen, D. O’Connell, R.S. Van de Water, A. Walker-Loud, Phys. Rev. D 73, 074510 (2006) [hep-lat/0510024]

    Article  ADS  Google Scholar 

  54. D. O’Connell, hep-lat/0609046

  55. J.W. Chen, D. O’Connell, A. Walker-Loud, Phys. Rev. D 75, 054501 (2007) [hep-lat/0611003]

    Article  ADS  Google Scholar 

  56. S. Descotes-Genon, Eur. Phys. J. C 40, 81 (2005) [hep-ph/0410233]

    Article  ADS  Google Scholar 

  57. NA48/2 Collaboration, J.R. Batley et al., Phys. Lett. B 633, 173 (2006) [hep-ex/0511056]

    Article  ADS  Google Scholar 

  58. N. Cabibbo, Phys. Rev. Lett. 93, 121801 (2004) [hep-ph/0405001]

    Article  ADS  Google Scholar 

  59. N. Cabibbo, G. Isidori, JHEP 0503, 021 (2005) [hep-ph/0502130]

    Article  ADS  Google Scholar 

  60. G. Colangelo, J. Gasser, B. Kubis, A. Rusetsky, Phys. Lett. B 638, 187 (2006) [hep-ph/0604084]

    Article  ADS  Google Scholar 

  61. E. Gamiz, J. Prades, I. Scimemi, Eur. Phys. J. C 50, 405 (2007) [hep-ph/0602023]

    Article  ADS  Google Scholar 

  62. FOCUS Collaboration, J.M. Link et al., Phys. Lett. B 607, 67 (2005) [hep-ex/0410067]

    Article  ADS  Google Scholar 

  63. CLEO Collaboration, M.R. Shepherd et al., Phys. Rev. D 74, 052001 (2006) [hep-ex/0606010]

    Article  ADS  Google Scholar 

  64. C.L.Y. Lee, M. Lu, M.B. Wise, Phys. Rev. D 46, 5040 (1992)

    Article  ADS  Google Scholar 

  65. B. Ananthanarayan, K. Shivaraj, Phys. Lett. B 628, 223 (2005) [hep-ph/0508116]

    Article  ADS  Google Scholar 

  66. ALEPH Collaboration, R. Barate et al., Eur. Phys. J. C 11, 599 (1999) [hep-ex/9903015]

    Article  ADS  Google Scholar 

  67. OPAL Collaboration, G. Abbiendi et al., Eur. Phys. J. C 35, 437 (2004) [hep-ex/0406007]

    Article  ADS  Google Scholar 

  68. M. Jamin, A. Pich, J. Portoles, Phys. Lett. B 640, 176 (2006) [hep-ph/0605096]

    Article  ADS  Google Scholar 

  69. M. Jamin, J.A. Oller, A. Pich, Phys. Rev. D 74, 074009 (2006) [hep-ph/0605095]

    Article  ADS  Google Scholar 

  70. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes – The Art of Scientific Computing (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Descotes-Genon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Descotes-Genon, S. Low-energy ππ and πK scatterings revisited in three-flavour resummed chiral perturbation theory. Eur. Phys. J. C 52, 141–158 (2007). https://doi.org/10.1140/epjc/s10052-007-0359-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-007-0359-7

Keywords

Navigation