Skip to main content
Log in

Focus point SUSY at the LHC revisited

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The estimation of the backgrounds for gluino signals in focus point supersymmetry is extended by including the backgrounds from the production of four third generation quarks in the analysis. We find that these backgrounds are negligible if one uses the strong selection criteria proposed in the literature (including this analysis) for heavy gluino searches. Softer selection criteria often recommended for lighter gluino searches yield backgrounds that are small but numerically significant. We have also repeated the more conventional background calculations and compared our results with the other groups. We find that the size of the total residual background estimated by different groups using different event generators and hard kinematical cuts agree approximately. In view of the theoretical uncertainties in the leading order signal and background cross sections mainly due to the choice of the QCD scale, the gluino mass reach at the LHC cannot be pinpointed. However, requiring a signal with ≥3 tagged b-jets (instead of the standard choice of ≥2) it is shown that gluino masses close to 2 TeV can be probed at the LHC for a range of reasonable choices of the QCD scale for an integrated luminosity of 300 fb-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.P. Nilles, Phys. Rep. 1, 110 (1984)

    Google Scholar 

  2. H.E. Haber, G. Kane, Phys. Rep. 117, 75 (1985)

    Article  ADS  Google Scholar 

  3. J. Wess, J. Bagger, Supersymmetry and Supergravity, 2nd ed. (Princeton University Press, Princeton, 1991)

  4. M. Drees, P. Roy, R.M. Godbole, Theory and Phenomenology of Sparticles (World Scientific, Singapore, 2005)

    Google Scholar 

  5. K.L. Chan, U. Chattopadhyay, P. Nath, Phys. Rev. D 58, 096004 (1998)

    Article  ADS  Google Scholar 

  6. J. Feng, K. Matchev, T. Moroi, Phys. Rev. Lett. 84, 2322 (2000)

    Article  ADS  Google Scholar 

  7. J. Feng, K. Matchev, T. Moroi, Phys. Rev. D 61, 075005 (2000)

    Article  ADS  Google Scholar 

  8. J. Feng, F. Wilczek, Phys. Lett. B 631, 170 (2005)

    Article  ADS  Google Scholar 

  9. A.H. Chamseddine, R. Arnowitt, P. Nath, Phys. Rev. Lett. 49, 970 (1982)

    Article  ADS  Google Scholar 

  10. R. Barbieri, S. Ferrara, C.A. Savoy, Phys. Lett. B 119, 343 (1982)

    Article  ADS  Google Scholar 

  11. L.J. Hall, J. Lykken, S. Weinberg, Phys. Rev. D 27, 2359 (1983)

    Article  ADS  Google Scholar 

  12. P. Nath, R. Arnowitt, A.H. Chamseddine, Nucl. Phys. B 227, 121 (1983)

    Article  ADS  Google Scholar 

  13. N. Ohta, Prog. Theor. Phys. 70, 542 (1983)

    Article  ADS  Google Scholar 

  14. P. Nath, R. Arnowitt, A.H. Chamseddine, Applied N=1 Supergravity (World Scientific, Singapore, 1984)

    Google Scholar 

  15. J.L. Feng, K.T. Matchev, Phys. Rev. D 63, 0950003 (2000)

    Article  Google Scholar 

  16. R. Barbieri, G.F. Giudice, Nucl. Phys. B 306, 63 (1988)

    Article  ADS  Google Scholar 

  17. B. de Carlos, J.A. Casas, Phys. Lett. B 309, 320 (1993)

    Article  ADS  Google Scholar 

  18. G.W. Anderson, D.J. Castano, Phys. Lett. B 347, 300 (1995)

    Article  ADS  Google Scholar 

  19. R. Barbieri, Phys. Rev. D 52, 1693 (1995)

    Article  ADS  Google Scholar 

  20. R. Barbieri, Phys. Rev. D 53, 2403 (1996)

    Article  Google Scholar 

  21. P. Ciafaloni, A. Strumia, Nucl. Phys. B 494, 41 (1997)

    Article  ADS  Google Scholar 

  22. G. Bhattacharyya, A. Romanino, Phys. Rev. D 55, 7015 (1997)

    Article  ADS  Google Scholar 

  23. P.H. Chankowski, J. Ellis, S. Pokorski, Phys. Lett. B 423, 327 (1998)

    Article  ADS  Google Scholar 

  24. M. Drees, M.M. Nojiri, D.P. Roy, Y. Yamada, Phys. Rev. D 56, 276 (1997)

    Article  ADS  Google Scholar 

  25. M. Drees, M.M. Nojiri, D.P. Roy, Y. Yamada, Phys. Rev. D 64, 039901 (2001)

    Article  ADS  Google Scholar 

  26. J. Edsjö, P. Gondolo, Phys. Rev. D 56, 1879 (1997)

    Article  ADS  Google Scholar 

  27. J.L. Feng, K.T. Matchev, F. Wilczek, Phys. Lett. B 482, 388 (2000)

    Article  ADS  Google Scholar 

  28. J.L. Feng, K.T. Matchev, F. Wilczek, Phys. Rev. D 63, 045024 (2001)

    Article  ADS  Google Scholar 

  29. M. Drees, AIP Conf. Proc. 805, 48 (2006) [arXiv:hep-ph/0509105]

    Article  ADS  Google Scholar 

  30. D.N. Spergel et al., Astrophys. J. Suppl. 170, 377 (2007) [arXiv:astro-ph/0603449]

    Article  ADS  Google Scholar 

  31. U. Chattopadhyay, A. Datta, A. Datta, A. Datta, D.P. Roy, Phys. Lett. B 493, 127 (2000)

    Article  ADS  Google Scholar 

  32. H. Baer, A. Belyaev, T. Krupovnickas, X. Tata, J. High Energ. Phys. 0306, 054 (2003)

    Article  ADS  Google Scholar 

  33. H. Baer , T. Krupovnickas , S. Profumo, P. Ullio, J. High Energ. Phys. 0510, 020 (2005)

    Article  ADS  Google Scholar 

  34. P.G. Mercadante, J.K. Mizukoshi, X. Tata, Phys. Rev. D 72, 035009 (2005)

    Article  ADS  Google Scholar 

  35. D. Denegri et al., Nuovo Cim. B 120, 687 (2005)

    ADS  Google Scholar 

  36. A. Belyaev, Int. J. Mod. Phys. A 21, 205 (2006)

    Article  ADS  MATH  Google Scholar 

  37. U. de Sanctis, T. Lari, S. Montesano, C. Troncon, ATLAS-SCIENTIFIC-NOTE-SN-ATLAS-2007-062, Apr 2007 [arXiv:hep-ex/0704.2515]

  38. H. Baer et al., Phys. Rev. D 75, 095010 (2007)

    Article  ADS  Google Scholar 

  39. A. Pukhov, “CalcHEPv2.4.5 – A package for evaluation of Feynman diagrams and integration over multi-particle phase-space”, http://www.ifh.de/ pukhov/calchep.html

  40. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A. Polosa, J. High Energ. Phys. 0307, 001 (2003)

    Article  ADS  Google Scholar 

  41. J. Alwall et al., J. High Energ. Phys. 0709, 028 (2007)

    Article  ADS  Google Scholar 

  42. F. Maltoni, T. Stelzer, J. High Energ. Phys. 0302, 027 (2003)

    Article  ADS  Google Scholar 

  43. T. Sjostrand, S. Mrenna, P. Skands, J. High Energ. Phys. 0605, 026 (2006)

    Article  ADS  Google Scholar 

  44. W. Beenakker et al., Nucl. Phys. B 492, 51 (1997)

    Article  ADS  Google Scholar 

  45. CDF and D0 Collaborations, P.A.M. Fernandez et al., arXiv:hep-ex/0705.3910

  46. CDF, D0 collaborations, M.H.L.S. Wang et al., arXiv:hep-ex/0705.3873

  47. CTEQ Collaboration, H.L. Lai et al., Phys. Rev. D 55, 1280 (1997)

    Article  ADS  Google Scholar 

  48. F.E. Paige, S.D. Protopopescu, H. Baer, X. Tata, hep-ph/0312045

  49. M.L. Mangano, M. Moretti, F. Piccinini, M. Treccani, J. High Energ. Phys. 0701, 013 (2007)

    Article  ADS  Google Scholar 

  50. P.Z. Skands, arXiv:hep-ph/0601103

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.P. Das.

Additional information

PACS

11.30.Pb; 12.60.Jv; 14.80.Ly; 95.35.+d

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S., Datta, A., Guchait, M. et al. Focus point SUSY at the LHC revisited. Eur. Phys. J. C 54, 645–653 (2008). https://doi.org/10.1140/epjc/s10052-008-0561-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-008-0561-2

Keywords

Navigation