Skip to main content
Log in

Electroweak precision constraints on vector-like fermions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We calculate the oblique electroweak corrections and confront them with the experiments in an extension of the standard model. The new fields added are a vector-like weak doublet and a singlet fermion. After electroweak symmetry breaking there is a mixing between the components of the new fields, but there is no mixing allowed with the standard fermions. Four electroweak parameters, \(\hat{S}\) , \(\hat{T}\) , W and Y, are presented in the formalism of Barbieri et al.; these are the generalization of the Peskin–Takeuchi S, T and U. The vector-like extension is slightly constrained. \(\hat{T}\) requires the new neutral fermion masses not to be very far from each other, allowing for higher mass differences for higher masses and smaller mixing. \(\hat{S}\) , W and Y give practically no constraints on the masses. This extension can give a positive contribution to \(\hat{T}\) , allowing for a heavy Higgs boson in electroweak precision tests of the standard model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Appelquist, H.-C. Cheng, B.A. Dobrescu, Bounds on universal extra dimensions. Phys. Rev. D 64, 035002 (2001)

    Article  ADS  Google Scholar 

  2. N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, The littlest Higgs. 0207, 034 (2002). arXiv:hep-ph/0206021

    MathSciNet  Google Scholar 

  3. N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, T. Gregoire, J.G. Wacker, The minimal moose for a little Higgs. J. High Energy Phys. 0208, 021 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  4. R. Barbieri, L.J. Hall, V.S. Rychkov, Improved naturalness with a heavy Higgs: An alternative road to LHC physics. Phys. Rev. D 74, 015007 (2006)

    Article  ADS  Google Scholar 

  5. R. Enberg, P.J. Fox, L.J. Hall, A.Y. Papaioannou, M. Papucci, LHC and dark matter signals of improved naturalness. J. High Energy Phys. 0711, 014 (2007)

    Article  ADS  Google Scholar 

  6. R. Mahbubani, L. Senatore, The minimal model for dark matter and unification. Phys. Rev. D 73, 043510 (2006)

    Article  ADS  Google Scholar 

  7. M. Cirelli, N. Fornengo, A. Strumia, Minimal dark matter. Nucl. Phys. B 753, 178 (2006)

    Article  MATH  ADS  Google Scholar 

  8. F. D’Eramo, Dark matter and Higgs boson physics. Phys. Rev. D 76, 083522 (2007)

    Article  ADS  Google Scholar 

  9. W.A. Bardeen, C.T. Hill, M. Lindner, Minimal dynamical symmetry breaking of the standard model. Phys. Rev. D 41, 1647 (1990)

    Article  ADS  Google Scholar 

  10. C.T. Hill, Opcolor: Top quark condensation in a gauge extension of the standard model. Phys. Lett. B 266, 419 (1991)

    Article  ADS  Google Scholar 

  11. M. Lindner, D. Ross, Top condensation from very massive strongly coupled gauge bosons. Nucl. Phys. B 370, 30 (1992)

    Article  ADS  Google Scholar 

  12. B.A. Dobrescu, C.T. Hill, Electroweak symmetry breaking via top condensation seesaw. Phys. Rev. Lett. 81, 2634 (1998)

    Article  ADS  Google Scholar 

  13. E. Ma, Increasing R b and decreasing R c with new heavy quarks. Phys. Rev. D 53, 2276 (1996)

    Article  ADS  Google Scholar 

  14. P. Bamert, C.P. Burgess, J.M. Cline, D. London, E. Nardi, R b and new physics: a comprehensive analysis. Phys. Rev. D 54, 4275 (1996)

    Article  ADS  Google Scholar 

  15. G. Cynolter, E. Lendvai, G. Pócsik, Fermion condensate model of electroweak interactions. Eur. Phys. J. 46, 545 (2006)

    Article  ADS  Google Scholar 

  16. W. Skiba, D. Tucker-Smith, Using jet mass to discover vector quarks at the LHC. Phys. Rev. D 75, 115010 (2007)

    Article  ADS  Google Scholar 

  17. M.E. Peskin, T. Takeuchi, Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381 (1992)

    Article  ADS  Google Scholar 

  18. W.-M. Yao et al., Review of particle physics. J. Phys. G 33, 1 (2006)

    Article  ADS  Google Scholar 

  19. R. Barbieri, A. Pomarol, R. Rattazzi, A. Strumia, Electroweak symmetry breaking after LEP1 and LEP2. Nucl. Phys. B 703, 127 (2004)

    Article  MATH  ADS  Google Scholar 

  20. I. Maksymyk, C.P. Burgess, D. London, Beyond S, T and U. Phys. Rev. D 50, 529 (1994). arXiv:hep-ph/9306267

    Article  ADS  Google Scholar 

  21. G. Altarelli, R. Barbieri, S. Jadach, Toward a model independent analysis of electroweak data. Nucl. Phys. B 369, 3 (1992)

    Article  ADS  Google Scholar 

  22. L. Lavoura, J.P. Silva, The oblique corrections from vector—like singlet and doublet quarks. Phys. Rev. D 47, 2046 (1993)

    Article  ADS  Google Scholar 

  23. M. Chen, S. Dawson, One-loop radiative corrections to the rho parameter in the littlest Higgs model. Phys. Rev. D 70, 015003 (2004)

    Article  ADS  Google Scholar 

  24. G. Cynolter, E. Lendvai, Gap equations and electroweak symmetry breaking. J. Phys. G 34, 1711 (2007)

    Article  ADS  Google Scholar 

  25. G. Marandella, C. Schappacher, A. Strumia, Supersymmetry and precision data after LEP2. Nucl. Phys. B 715, 173 (2005)

    Article  MATH  ADS  Google Scholar 

  26. G. Cacciapaglia, C. Csaki, G. Marandella, A. Strumia, The minimal set of electroweak precision parameters. Phys. Rev. D 74, 033011 (2006)

    Article  ADS  Google Scholar 

  27. LEP Electroweak Working Group homepage, http://lepewwg.web.cern.ch/LEPEWWG, 2006 summer plots

  28. F. del Aguila, J. de Blas, M. Perez-Victoria, Effects of new leptons in electroweak precision data. Phys. Rev. D 78, 013010 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Cynolter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cynolter, G., Lendvai, E. Electroweak precision constraints on vector-like fermions. Eur. Phys. J. C 58, 463–469 (2008). https://doi.org/10.1140/epjc/s10052-008-0771-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-008-0771-7

Keywords

Navigation