Skip to main content
Log in

WHIZARD—simulating multi-particle processes at LHC and ILC

  • Special Article - Tools for Experiment and Theory
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We describe the universal Monte-Carlo (parton-level) event generator WHIZARD (http://whizard.event-generator.org), version 2. The program automatically computes complete tree-level matrix elements, integrates them over phase space, evaluates distributions of observables, and generates unweighted partonic event samples. These are showered and hadronized by calling external codes, either automatically from within the program or via standard interfaces. There is no conceptual limit on the process complexity; using current hardware, the program has successfully been applied to hard scattering processes with up to eight particles in the final state. Matrix elements are computed as helicity amplitudes, so spin and color correlations are retained. For event generation, processes can be concatenated with full spin correlation, so factorized approximations to cascade decays are possible when complete matrix elements are not desired. The Standard Model, the MSSM, and many alternative models such as Little Higgs, anomalous couplings, or effects of extra dimensions or noncommutative SM extensions have been implemented. Using standard interfaces to parton shower and hadronization programs, WHIZARD covers physics at hadron, lepton, and photon colliders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.U. Bengtsson, T. Sjöstrand, Comput. Phys. Commun. 46, 43 (1987)

    Article  ADS  Google Scholar 

  2. T. Sjöstrand, L. Lönnblad, S. Mrenna, P. Skands, arXiv:hep-ph/0308153

  3. G. Marchesini, B.R. Webber, G. Abbiendi, I.G. Knowles, M.H. Seymour, L. Stanco, Comput. Phys. Commun. 67, 465 (1992)

    Article  ADS  Google Scholar 

  4. G. Corcella et al., arXiv:hep-ph/0210213

  5. A. Pukhov et al., arXiv:hep-ph/9908288

  6. E. Boos et al. (CompHEP Collaboration), Nucl. Instrum. Methods A 534, 250 (2004). arXiv:hep-ph/0403113

    Article  ADS  Google Scholar 

  7. T. Ishikawa, T. Kaneko, K. Kato, S. Kawabata, Y. Shimizu, H. Tanaka (MINAMI-TATEYA group Collaboration), KEK-92-19

  8. J. Fujimoto et al., Comput. Phys. Commun. 153, 106 (2003). arXiv:hep-ph/0208036

    Article  ADS  Google Scholar 

  9. T. Stelzer, F. Long, Comput. Phys. Commun. 81, 357 (1994)

    Article  ADS  Google Scholar 

  10. H. Murayama, I. Watanabe, K. Hagiwara, KEK-91-11

  11. R. Kleiss, R. Pittau, Comput. Phys. Commun. 83, 141 (1994)

    Article  ADS  Google Scholar 

  12. T. Ohl, Comput. Phys. Commun. 120, 13 (1999). arXiv:hep-ph/9806432

    Article  ADS  MATH  Google Scholar 

  13. W. Kilian, J. Reuter, S. Schmidt, in preparation

  14. F. Maltoni, T. Stelzer, J. High Energy Phys. 0302, 027 (2003)

    Article  ADS  Google Scholar 

  15. J. Alwall et al., J. High Energy Phys. 0709, 028 (2007). arXiv:0706.2334 [hep-ph]

    Article  ADS  Google Scholar 

  16. N.D. Christensen, C. Duhr, Comput. Phys. Commun. 180, 1614 (2009). arXiv:0806.4194 [hep-ph]

    Article  ADS  Google Scholar 

  17. S. Frixione, B.R. Webber, J. High Energy Phys. 0206, 029 (2002). arXiv:hep-ph/0204244

    Article  ADS  Google Scholar 

  18. S. Frixione, P. Nason, B.R. Webber, J. High Energy Phys. 0308, 007 (2003). arXiv:hep-ph/0305252

    Article  ADS  Google Scholar 

  19. S. Catani, F. Krauss, R. Kuhn, B.R. Webber, J. High Energy Phys. 0111, 063 (2001)

    Article  ADS  Google Scholar 

  20. F. Caravaglios, M. Moretti, Z. Phys. C 74, 291 (1997). arXiv:hep-ph/9604316

    Article  Google Scholar 

  21. W. Kilian, LC-TOOL-2001-039

  22. W. Kilian, Prepared for 31st International Conference on High Energy Physics (ICHEP 2002), Amsterdam, The Netherlands, 24–31 Jul 2002

  23. A. Kanaki, C.G. Papadopoulos, Comput. Phys. Commun. 132, 306 (2000). arXiv:hep-ph/0002082

    Article  ADS  MATH  Google Scholar 

  24. T. Gleisberg, S. Hoche, F. Krauss, A. Schalicke, S. Schumann, J.C. Winter, J. High Energy Phys. 0402, 056 (2004)

    Article  ADS  Google Scholar 

  25. T. Ohl, arXiv:hep-ph/0011287

  26. T. Ohl, arXiv:hep-ph/0011243

  27. M. Moretti, T. Ohl, J. Reuter, arXiv:hep-ph/0102195

  28. W. Kilian, T. Ohl, J. Reuter, O’Mega: An Optimizing Matrix Element Generator. II: Color Flow Amplitudes, in preparation

  29. P. Skands et al., J. High Energy Phys. 0407, 036 (2004). arXiv:hep-ph/0311123

    Article  ADS  Google Scholar 

  30. J.A. Aguilar-Saavedra et al., Eur. Phys. J. C 46, 43 (2006). arXiv:hep-ph/0511344

    Article  ADS  Google Scholar 

  31. B. Allanach et al., Comput. Phys. Commun. 180, 8 (2009). arXiv:0801.0045 [hep-ph]

    Article  ADS  Google Scholar 

  32. X. Leroy, The Objective Caml system, documentation and user’s guide, Technical Report, INRIA, 1997

  33. M. Beneke, P. Falgari, C. Schwinn, A. Signer, G. Zanderighi, arXiv:0707.0773 [hep-ph]

  34. C. Schwinn, arXiv:0708.0730 [hep-ph]

  35. S. Dittmaier, M. Roth, Nucl. Phys. B 642, 307 (2002). arXiv:hep-ph/0206070

    Article  Google Scholar 

  36. C. Schwinn, arXiv:hep-ph/0412028

  37. A. Djouadi, W. Kilian, M. Muhlleitner, P.M. Zerwas, Eur. Phys. J. C 10, 27 (1999). arXiv:hep-ph/9903229

    ADS  Google Scholar 

  38. A. Djouadi, W. Kilian, M. Muhlleitner, P.M. Zerwas, Eur. Phys. J. C 10, 45 (1999). arXiv:hep-ph/9904287

    Article  ADS  Google Scholar 

  39. T. Barklow, Talk at the American Linear Collider Physics Group Workshop, SLAC, 7–10 Jan. 2004

  40. J. Hewett, Talk at the International Linear Collider Workshop (DESY, May 30–June 3, 2007)

  41. J. Reuter, unpublished

  42. M. Kuroda, KEK-CP-080. arXiv:hep-ph/9902340

  43. A. Denner, H. Eck, O. Hahn, J. Küblbeck, Nucl. Phys. B 387, 467 (1992)

    Article  ADS  Google Scholar 

  44. A. Denner, H. Eck, O. Hahn, J. Küblbeck, Phys. Lett. B 291, 278 (1992)

    Article  ADS  Google Scholar 

  45. K. Hagiwara et al., Phys. Rev. D 73, 055005 (2006). arXiv:hep-ph/0512260

    Article  ADS  Google Scholar 

  46. J. Reuter, PhD thesis, TU Darmstadt 2002. arXiv:hep-th/0212154

  47. T. Ohl, J. Reuter, Eur. Phys. J. C 30, 525 (2003). arXiv:hep-th/0212224

    Article  ADS  MATH  Google Scholar 

  48. C. Bartels, J. List, arXiv:1007.2748 [hep-ex]

  49. F.F. Deppisch, O. Kittel, J. High Energy Phys. 1006, 067 (2010). arXiv:1003.5186 [hep-ph]

    Article  ADS  Google Scholar 

  50. J. Kalinowski, W. Kilian, J. Reuter, T. Robens, K. Rolbiecki, Acta Phys. Pol. B 39, 1705 (2008). arXiv:0803.4161 [hep-ph]

    ADS  Google Scholar 

  51. J. Kalinowski, W. Kilian, J. Reuter, T. Robens, K. Rolbiecki, J. High Energy Phys. 0810, 090 (2008). arXiv:0809.3997 [hep-ph]

    Article  ADS  Google Scholar 

  52. J. Kalinowski, W. Kilian, J. Reuter, T. Robens, K. Rolbiecki, arXiv:0901.4700 [hep-ph]

  53. J. Reuter, D. Wiesler, Phys. Rev. D 84, 015012 (2011). arXiv:1010.4215 [hep-ph]

    ADS  Google Scholar 

  54. J. Reuter, D. Wiesler, in preparation

  55. J. Reuter, F. Braam, AIP Conf. Proc. 1200, 470 (2010). arXiv:0909.3059 [hep-ph]

    Article  ADS  Google Scholar 

  56. B. Fuks, J. Reuter, F. Braam, in preparation

  57. W. Kilian, J. Reuter, Phys. Lett. B 642, 81 (2006). arXiv:hep-ph/0606277

    Article  ADS  Google Scholar 

  58. F. Braam, J. Reuter, D. Wiesler, AIP Conf. Proc. 1200, 458 (2010). arXiv:0909.3081 [hep-ph]

    Article  ADS  Google Scholar 

  59. W. Kilian, J. Reuter, Phys. Rev. D 70, 015004 (2004). arXiv:hep-ph/0311095

    Article  ADS  Google Scholar 

  60. W. Kilian, D. Rainwater, J. Reuter, Phys. Rev. D 71, 015008 (2005). arXiv:hep-ph/0411213

    Article  ADS  Google Scholar 

  61. W. Kilian, D. Rainwater, J. Reuter, in The Proceedings of 2005 International Linear Collider Workshop (LCWS 2005), Stanford, CA, 18–22 Mar 2005 (2005), pp. 0109. arXiv:hep-ph/0507081

    Google Scholar 

  62. W. Kilian, D. Rainwater, J. Reuter, Phys. Rev. D 74, 095003 (2006). arXiv:hep-ph/0609119

    Article  ADS  Google Scholar 

  63. S. Heinemeyer et al., arXiv:hep-ph/0511332

  64. J. Reuter et al., arXiv:hep-ph/0512012

  65. B.C. Allanach et al., arXiv:hep-ph/0602198

  66. S. Kraml et al., arXiv:hep-ph/0608079

  67. J.R. Andersen et al. (SM and NLO Multileg Working Group), arXiv:1003.1241 [hep-ph]

  68. J.M. Butterworth et al., arXiv:1003.1643 [hep-ph]

  69. E. Boos, H.J. He, W. Kilian, A. Pukhov, C.P. Yuan, P.M. Zerwas, Phys. Rev. D 57, 1553 (1998). arXiv:hep-ph/9708310

    Article  ADS  Google Scholar 

  70. E. Boos, H.J. He, W. Kilian, A. Pukhov, C.P. Yuan, P.M. Zerwas, Phys. Rev. D 61, 077901 (2000). arXiv:hep-ph/9908409

    Article  ADS  Google Scholar 

  71. R. Chierici, S. Rosati, M. Kobel, LC-PHSM-2001-038

  72. W. Kilian, J. Reuter, in The Proceedings of 2005 International Linear Collider Workshop (LCWS 2005), Stanford, CA, 18–22 Mar 2005 (2005), p. 0311. arXiv:hep-ph/0507099

    Google Scholar 

  73. M. Beyer, W. Kilian, P. Krstonošic, K. Mönig, J. Reuter, E. Schmidt, H. Schröder, Eur. Phys. J. C 48, 353 (2006). arXiv:hep-ph/0604048

    Article  ADS  Google Scholar 

  74. A. Alboteanu, W. Kilian, J. Reuter, J. High Energy Phys. 0811, 010 (2008). arXiv:0806.4145 [hep-ph]

    Article  ADS  Google Scholar 

  75. W. Kilian, M. Kobel, J. Reuter, J. Schumacher, in preparation

  76. C. Schwinn, Phys. Rev. D 71, 113005 (2005). arXiv:hep-ph/0504240

    Article  ADS  Google Scholar 

  77. T. Ohl, J. Reuter, Phys. Rev. D 70, 076007 (2004). arXiv:hep-ph/0406098

    Article  ADS  Google Scholar 

  78. T. Ohl, J. Reuter, arXiv:hep-ph/0407337

  79. A. Alboteanu, T. Ohl, R. Rückl, PoS HEP2005, 322 (2006). arXiv:hep-ph/0511188

    Google Scholar 

  80. A. Alboteanu, T. Ohl, R. Rückl, Phys. Rev. D 74, 096004 (2006). arXiv:hep-ph/0608155

    Article  ADS  Google Scholar 

  81. F. Cachazo, P. Svrcek, E. Witten, J. High Energy Phys. 0409, 006 (2004). arXiv:hep-th/0403047

    Article  MathSciNet  ADS  Google Scholar 

  82. M. Dinsdale, M. Ternick, S. Weinzierl, J. High Energy Phys. 0603, 056 (2006). arXiv:hep-ph/0602204

    Article  MathSciNet  ADS  Google Scholar 

  83. C. Schwinn, S. Weinzierl, J. High Energy Phys. 0603, 030 (2006). arXiv:hep-th/0602012

    Article  MathSciNet  ADS  Google Scholar 

  84. E. Boos, T. Ohl, Phys. Rev. Lett. 83, 480 (1999). arXiv:hep-ph/9903357

    Article  ADS  Google Scholar 

  85. E. Boos, T. Ohl, arXiv:hep-ph/9909487

  86. T. Ohl, C. Schwinn, Eur. Phys. J. C 30, 567 (2003). arXiv:hep-ph/0305334

    Article  ADS  MATH  Google Scholar 

  87. C. Schwinn, PhD thesis, TU Darmstadt/Univ. of Würzburg 2003. arXiv:hep-ph/0307057

  88. F. Maltoni, K. Paul, T. Stelzer, S. Willenbrock, Phys. Rev. D 67, 014026 (2003). arXiv:hep-ph/0209271

    Article  ADS  Google Scholar 

  89. G.P. Lepage, CLNS-80/447

  90. T. Ohl, Comput. Phys. Commun. 101, 269 (1997)

    Article  ADS  Google Scholar 

  91. T. Ohl, arXiv:hep-ph/9607454

  92. D. Schulte, CERN-PS-99-014-LP, CERN-PS-99-14-LP, CLIC-NOTE-387, CERN-CLIC-NOTE-387 (1999)

  93. M.R. Whalley, D. Bourilkov, R.C. Group, arXiv:hep-ph/0508110

  94. D. Bourilkov, arXiv:hep-ph/0305126

  95. E. Boos et al., arXiv:hep-ph/0109068

  96. N.D. Christensen, C. Duhr, B. Fuks, J. Reuter, C. Speckner, arXiv:1010.3251 [hep-ph]

  97. W. Kilian, J. Reuter, T. Robens, Eur. Phys. J. C 48, 389 (2006). arXiv:hep-ph/0607127

    Article  ADS  Google Scholar 

  98. W. Kilian, J. Reuter, T. Robens, AIP Conf. Proc. 903, 177 (2007). arXiv:hep-ph/0610425

    Article  ADS  Google Scholar 

  99. T. Hahn, Comput. Phys. Commun. 140, 418 (2001). arXiv:hep-ph/0012260

    Article  ADS  MATH  Google Scholar 

  100. T. Hahn, C. Schappacher, Comput. Phys. Commun. 143, 54 (2002). arXiv:hep-ph/0105349

    Article  ADS  MATH  Google Scholar 

  101. T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999). arXiv:hep-ph/9807565

    Article  ADS  Google Scholar 

  102. http://mlm.web.cern.ch/mlm/talks/kek-alpgen.pdf

  103. T. Binoth, N. Greiner, A. Guffanti et al., Phys. Lett. B 685, 293–296 (2010). arXiv:0910.4379 [hep-ph]

    ADS  Google Scholar 

  104. N. Greiner, A. Guffanti, T. Reiter, J. Reuter, Phys. Rev. Lett. 107, 102002 (2011). arXiv:1105.3624 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Reuter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilian, W., Ohl, T. & Reuter, J. WHIZARD—simulating multi-particle processes at LHC and ILC. Eur. Phys. J. C 71, 1742 (2011). https://doi.org/10.1140/epjc/s10052-011-1742-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1742-y

Keywords

Navigation