Skip to main content
Log in

MSSM interpretations of the LHC discovery: light or heavy Higgs?

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

A Higgs-like particle with a mass of about 126 GeV has been discovered at the LHC. Within the experimental uncertainties, the measured properties of this new state are compatible with those of the Higgs boson in the Standard Model (SM). While not statistically significant at present, the results show some interesting patterns of deviations from the SM predictions, in particular a higher rate in the γγ decay mode observed by ATLAS and CMS, and a somewhat smaller rate in the τ + τ mode. The LHC discovery is also compatible with the predictions of the Higgs sector of the Minimal Supersymmetric Standard Model (MSSM), interpreting the new state as either the light or the heavy \(\mathcal{CP}\)-even MSSM Higgs boson. Within the framework of the MSSM with seven free parameters (pMSSM-7), we fit the various rates of cross section times branching ratio as measured by the LHC and Tevatron experiments under the hypotheses of either the light or the heavy \(\mathcal{CP}\)-even Higgs boson being the new state around 126 GeV, with and without the inclusion of further low-energy observables. We find an overall good quality of the fits, with the best fit points exhibiting an enhancement of the γγ rate, as well as a small suppression of the \(b \bar{b}\) and τ + τ channels with respect to their SM expectations, depending on the details of the fit. For the fits including the whole dataset the light \(\mathcal{CP}\)-even Higgs interpretation in the MSSM results in a higher relative fit probability than the SM fit. On the other hand, we find that the present data also permit the more exotic interpretation in terms of the heavy \(\mathcal{CP}\)-even MSSM Higgs, which could give rise to experimental signatures of additional Higgs states in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. The reader should keep in mind here (and in the following) that the point density has no statistical meaning.

  2. If the experimental and theory uncertainties were instead combined in quadrature, this would give a total Higgs mass uncertainty of \(\sigma _{\hat {M}_{H}}=2.24\ \mathrm{GeV}\). Such a change would have a negligible impact on the overall result.

  3. We note that the Belle Collaboration has recently reported a new measurement of \({\operatorname {BR}}(B_{u} \to \tau \nu_{\tau})\), which is in better agreement with the SM (and thus naturally with models with two Higgs doublets) [110]. While we do not take this new result into account in our overall fit results, we do comment briefly on its possible effects.

  4. The most recent evaluation of a μ in the SM [115], taking also τ data into account, finds an even larger deviation of more than 4σ.

  5. The effective coupling to gluons is defined via the ratio of the MSSM and SM decay widths to gluons. The relative vector boson coupling is obtained from the inclusion of higher-order corrections into the \({\mathcal {CP}} \)-even Higgs mixing angle, α.

  6. In this work a Higgs mass measurement of \(\hat {M}_{H}=125\ \mathrm{GeV}\) was assumed, whereas we now use the average mass \(\hat {M}_{H}=125.7\ \mathrm{GeV}\).

  7. The dominant contributions to Δ b beyond one-loop order are the QCD corrections, given in [148]. Those two-loop contributions are not included in our analysis, but their numerical effect is approximated by using a scale of m t for the evaluation of the one-loop expression.

References

  1. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1–29 (2012). arXiv:1207.7214

    Article  ADS  Google Scholar 

  2. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30–61 (2012). arXiv:1207.7235

    Article  ADS  Google Scholar 

  3. TEVNPH Working Group for the CDF, DØ Collaborations, arXiv:1207.0449

  4. ATLAS Collaboration, ATLAS-CONF-2012-091

  5. CMS Collaboration, CMS-HIG-12-015

  6. ATLAS Collaboration, ATLAS-CONF-2012-093

  7. CMS Collaboration, CMS-HIG-12-020

  8. J.R. Ellis, G. Ridolfi, F. Zwirner, Phys. Lett. B 257, 83–91 (1991)

    Article  ADS  Google Scholar 

  9. Y. Okada, M. Yamaguchi, T. Yanagida, Prog. Theor. Phys. 85, 1–6 (1991)

    Article  ADS  Google Scholar 

  10. H.E. Haber, R. Hempfling, Phys. Rev. Lett. 66, 1815–1818 (1991)

    Article  ADS  Google Scholar 

  11. A. Brignole, Phys. Lett. B 281, 284–294 (1992)

    Article  ADS  Google Scholar 

  12. P.H. Chankowski, S. Pokorski, J. Rosiek, Phys. Lett. B 286, 307–314 (1992)

    Article  ADS  Google Scholar 

  13. P.H. Chankowski, S. Pokorski, J. Rosiek, Nucl. Phys. B 423, 437–496 (1994). hep-ph/9303309

    Article  ADS  Google Scholar 

  14. A. Dabelstein, Z. Phys. C 67, 495–512 (1995). hep-ph/9409375

    Article  ADS  Google Scholar 

  15. A. Dabelstein, Nucl. Phys. B 456, 25–56 (1995). hep-ph/9503443

    Article  ADS  Google Scholar 

  16. A. Djouadi, Phys. Rep. 459, 1–241 (2008). hep-ph/0503173

    Article  ADS  Google Scholar 

  17. S. Heinemeyer, Int. J. Mod. Phys. A 21, 2659–2772 (2006). hep-ph/0407244

    Article  ADS  MATH  Google Scholar 

  18. S. Heinemeyer, W. Hollik, G. Weiglein, Phys. Rep. 425, 265–368 (2006). hep-ph/0412214

    Article  ADS  Google Scholar 

  19. S. Heinemeyer, O. Stål, G. Weiglein, Phys. Lett. B 710, 201–206 (2012). arXiv:1112.3026

    Article  ADS  Google Scholar 

  20. R. Benbrik, M. Gomez Bock, S. Heinemeyer, O. Stål, G. Weiglein, L. Zeune, Eur. Phys. J. C 72, 2171 (2012). arXiv:1207.1096

    Article  ADS  Google Scholar 

  21. L.J. Hall, D. Pinner, J.T. Ruderman, J. High Energy Phys. 1204, 131 (2012). arXiv:1112.2703

    Article  ADS  Google Scholar 

  22. H. Baer, V. Barger, A. Mustafayev, Phys. Rev. D 85, 075010 (2012). arXiv:1112.3017

    Article  ADS  Google Scholar 

  23. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. Quevillon, Phys. Lett. B 708, 162–169 (2012). arXiv:1112.3028

    Article  ADS  Google Scholar 

  24. P. Draper, P. Meade, M. Reece, D. Shih, Phys. Rev. D 85, 095007 (2012). arXiv:1112.3068

    Article  ADS  Google Scholar 

  25. M. Kadastik, K. Kannike, A. Racioppi, M. Raidal, J. High Energy Phys. 1205, 061 (2012). arXiv:1112.3647

    Article  ADS  Google Scholar 

  26. J. Cao, Z. Heng, D. Li, J.M. Yang, Phys. Lett. B 710, 665–670 (2012). arXiv:1112.4391

    Article  ADS  Google Scholar 

  27. F. Brümmer, W. Buchmüller, J. High Energy Phys. 1205, 006 (2012). arXiv:1201.4338

    Article  ADS  Google Scholar 

  28. J. Ellis, K.A. Olive, Eur. Phys. J. C 72, 2005 (2012). arXiv:1202.3262

    Article  ADS  Google Scholar 

  29. N. Desai, B. Mukhopadhyaya, S. Niyogi, arXiv:1202.5190

  30. T. Cheng, J. Li, T. Li, D.V. Nanopoulos, C. Tong, arXiv:1202.6088

  31. M. Asano, S. Matsumoto, M. Senami, H. Sugiyama, Phys. Rev. D 86, 015020 (2012). arXiv:1202.6318

    Article  ADS  Google Scholar 

  32. J.-J. Cao, Z. Heng, J.M. Yang, J. Zhu, J. High Energy Phys. 1206, 145 (2012). arXiv:1203.0694

    Article  ADS  Google Scholar 

  33. A. Choudhury, A. Datta, J. High Energy Phys. 1206, 006 (2012). arXiv:1203.4106

    Article  ADS  Google Scholar 

  34. M.A. Ajaib, I. Gogoladze, F. Nasir, Q. Shafi, Phys. Lett. B 713, 462–468 (2012). arXiv:1204.2856

    Article  ADS  Google Scholar 

  35. F. Brümmer, S. Kraml, S. Kulkarni, J. High Energy Phys. 1208, 089 (2012). arXiv:1204.5977

    Article  ADS  Google Scholar 

  36. J.L. Evans, M. Ibe, T.T. Yanagida, Phys. Rev. D 86, 015017 (2012). arXiv:1204.6085

    Article  ADS  Google Scholar 

  37. A. Fowlie, M. Kazana, K. Kowalska, S. Munir, L. Roszkowski et al., arXiv:1206.0264

  38. M.R. Buckley, D. Hooper, arXiv:1207.1445

  39. S. Akula, P. Nath, G. Peim, Phys. Lett. B 717, 188–192 (2012). arXiv:1207.1839

    Article  ADS  Google Scholar 

  40. J. Cao, Z. Heng, J.M. Yang, J. Zhu, J. High Energy Phys. 1210, 079 (2012). arXiv:1207.3698

    Article  ADS  Google Scholar 

  41. M. Hirsch, F. Joaquim, A. Vicente, arXiv:1207.6635

  42. O. Buchmueller, R. Cavanaugh, M. Citron, A. De Roeck, M. Dolan et al., arXiv:1207.7315

  43. K. Howe, P. Saraswat, J. High Energy Phys. 1210, 065 (2012). arXiv:1208.1542

    Article  ADS  Google Scholar 

  44. C. Wymant, arXiv:1208.1737

  45. Z. Kang, T. Li, J. Li, Y. Liu, arXiv:1208.2673

  46. T. Kitahara, arXiv:1208.4792

  47. Z. Heng, arXiv:1210.3751

  48. M. Carena, S. Gori, N.R. Shah, C.E. Wagner, L.-T. Wang, J. High Energy Phys. 1207, 175 (2012). arXiv:1205.5842

    Article  ADS  Google Scholar 

  49. M. Carena, S. Gori, N.R. Shah, C.E. Wagner, J. High Energy Phys. 1203, 014 (2012). arXiv:1112.3336

    Article  ADS  Google Scholar 

  50. U. Haisch, F. Mahmoudi, arXiv:1210.7806

  51. M. Drees, arXiv:1210.6507

  52. J. Espinosa, C. Grojean, M. Mühlleitner, M. Trott, J. High Energy Phys. 1212, 045 (2012). arXiv:1207.1717

    Article  ADS  Google Scholar 

  53. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky, J. High Energy Phys. 1207, 136 (2012). arXiv:1202.3144

    Article  ADS  Google Scholar 

  54. A. Azatov, R. Contino, J. Galloway, J. High Energy Phys. 1204, 127 (2012). arXiv:1202.3415

    Article  ADS  Google Scholar 

  55. P.P. Giardino, K. Kannike, M. Raidal, A. Strumia, J. High Energy Phys. 1206, 117 (2012). arXiv:1203.4254

    Article  ADS  Google Scholar 

  56. M. Klute, R. Lafaye, T. Plehn, M. Rauch, D. Zerwas, Phys. Rev. Lett. 109, 101801 (2012). arXiv:1205.2699

    Article  ADS  Google Scholar 

  57. A. Azatov, S. Chang, N. Craig, J. Galloway, Phys. Rev. D 86, 075033 (2012). arXiv:1206.1058

    Article  ADS  Google Scholar 

  58. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky, arXiv:1206.4201

  59. I. Low, J. Lykken, G. Shaughnessy, Phys. Rev. D 86, 093012 (2012). arXiv:1207.1093

    Article  ADS  Google Scholar 

  60. T. Corbett, O. Eboli, J. Gonzalez-Fraile, M. Gonzalez-Garcia, Phys. Rev. D 86, 075013 (2012). arXiv:1207.1344

    Article  ADS  Google Scholar 

  61. P.P. Giardino, K. Kannike, M. Raidal, A. Strumia, Phys. Lett. B 718, 469–474 (2012). arXiv:1207.1347

    Article  ADS  Google Scholar 

  62. J. Ellis, T. You, J. High Energy Phys. 1209, 123 (2012). arXiv:1207.1693

    Article  ADS  Google Scholar 

  63. M. Montull, F. Riva, J. High Energy Phys. 1211, 018 (2012). arXiv:1207.1716

    Article  ADS  Google Scholar 

  64. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky, J. Zupan, J. High Energy Phys. 1210, 196 (2012). arXiv:1207.1718

    Article  ADS  Google Scholar 

  65. S. Banerjee, S. Mukhopadhyay, B. Mukhopadhyaya, J. High Energy Phys. 1210, 062 (2012). arXiv:1207.3588

    Article  ADS  Google Scholar 

  66. F. Bonnet, T. Ota, M. Rauch, W. Winter, Phys. Rev. D 86, 093014 (2012). arXiv:1207.4599

    Article  ADS  Google Scholar 

  67. T. Plehn, M. Rauch, Europhys. Lett. 100, 11002 (2012). arXiv:1207.6108

    Article  Google Scholar 

  68. J.R. Espinosa, C. Grojean, V. Sanz, M. Trott, J. High Energy Phys. 1212, 077 (2012). arXiv:1207.7355

    Article  ADS  Google Scholar 

  69. A. Djouadi, arXiv:1208.3436

  70. W. Altmannshofer, S. Gori, G.D. Kribs, Phys. Rev. D 86, 115009 (2012). arXiv:1210.2465

    Article  ADS  Google Scholar 

  71. B.A. Dobrescu, J.D. Lykken, arXiv:1210.3342

  72. S. Chang, S.K. Kang, J.-P. Lee, K.Y. Lee, S.C. Park et al., arXiv:1210.3439

  73. G. Cacciapaglia, A. Deandrea, G.D. La Rochelle, J.-B. Flament, arXiv:1210.8120

  74. A. David et al. (LHC Higgs Cross Section Working Group), arXiv:1209.0040

  75. S. Schael et al. (ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration OPAL Collaborations), Eur. Phys. J. C 47, 547–587 (2006). hep-ex/0602042

    Article  ADS  Google Scholar 

  76. D. Benjamin et al. (TEVNPH Working Group), arXiv:1003.3363

  77. T. Aaltonen, et al. (CDF and D0 Collaborations), arXiv:1207.2757

  78. ATLAS Collaboration ATLAS-CONF-2012-094

  79. CMS Collaboration CMS-PAS-HIG-11-029

  80. M.S. Carena, S. Heinemeyer, C.E.M. Wagner, G. Weiglein, hep-ph/9912223

  81. M.S. Carena, S. Heinemeyer, C.E.M. Wagner, G. Weiglein, Eur. Phys. J. C 26, 601–607 (2003). hep-ph/0202167

    Article  ADS  Google Scholar 

  82. M.S. Carena, S. Heinemeyer, C. Wagner, G. Weiglein, Eur. Phys. J. C 45, 797–814 (2006). hep-ph/0511023

    Article  ADS  Google Scholar 

  83. A. Arbey, M. Battaglia, F. Mahmoudi, Eur. Phys. J. C 72, 2169 (2012). arXiv:1205.2557

    Article  ADS  Google Scholar 

  84. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. High Energy Phys. 1209, 107 (2012). arXiv:1207.1348

    Article  ADS  Google Scholar 

  85. S. AbdusSalam, B. Allanach, H. Dreiner, J. Ellis, U. Ellwanger et al., Eur. Phys. J. C 71, 1835 (2011). arXiv:1109.3859

    Article  ADS  Google Scholar 

  86. J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  87. S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343–366 (1999). hep-ph/9812472

    ADS  Google Scholar 

  88. S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76–89 (2000). hep-ph/9812320

    Article  ADS  MATH  Google Scholar 

  89. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133–143 (2003). hep-ph/0212020

    Article  ADS  Google Scholar 

  90. M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak et al., J. High Energy Phys. 0702, 047 (2007). hep-ph/0611326

    Article  ADS  Google Scholar 

  91. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Commun. 181, 138–167 (2010). arXiv:0811.4169

    Article  ADS  MATH  Google Scholar 

  92. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Commun. 182, 2605–2631 (2011). arXiv:1102.1898

    Article  ADS  Google Scholar 

  93. ATLAS Collaboration, ATLAS-CONF-2012-012

  94. ATLAS Collaboration, ATLAS-CONF-2012-098

  95. G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 86, 032003 (2012). arXiv:1207.0319

    Article  ADS  Google Scholar 

  96. ATLAS Collaboration ATLAS-CONF-2012-092

  97. S. Dittmaier et al. (LHC Higgs Cross Section Working Group), arXiv:1101.0593

  98. S. Dittmaier, S. Dittmaier, C. Mariotti, G. Passarino, R. Tanaka et al., arXiv:1201.3084

  99. https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections

  100. D. de Florian, M. Grazzini, Phys. Lett. B 674, 291–294 (2009). arXiv:0901.2427

    Article  ADS  Google Scholar 

  101. http://theory.fi.infn.it/grazzini/hcalculators.html

  102. T. Hahn, S. Heinemeyer, F. Maltoni, G. Weiglein, S. Willenbrock, hep-ph/0607308

  103. T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Nucl. Phys. B, Proc. Suppl. 205–206, 152–157 (2010). arXiv:1007.0956

    Article  Google Scholar 

  104. R. Bonciani, G. Degrassi, A. Vicini, J. High Energy Phys. 0711, 095 (2007). arXiv:0709.4227

    Article  ADS  Google Scholar 

  105. U. Aglietti, R. Bonciani, G. Degrassi, A. Vicini, J. High Energy Phys. 0701, 021 (2007). hep-ph/0611266

    Article  ADS  Google Scholar 

  106. A. Dedes, P. Slavich, Nucl. Phys. B 657, 333–354 (2003). hep-ph/0212132

    Article  ADS  Google Scholar 

  107. A. Dedes, G. Degrassi, P. Slavich, Nucl. Phys. B 672, 144–162 (2003). hep-ph/0305127

    Article  ADS  Google Scholar 

  108. S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 16, 139–153 (2000). hep-ph/0003022

    Article  ADS  Google Scholar 

  109. K.E. Williams, H. Rzehak, G. Weiglein, Eur. Phys. J. C 71, 1669 (2011). arXiv:1103.1335

    Article  ADS  Google Scholar 

  110. Y. Yook, Talk given at ICHEP 2012, see: http://indico.cern.ch/getFile.py/access?contribId=573&sessionId=66&resId=0&materialId=slides&confId=181298

  111. F. Mahmoudi, Comput. Phys. Commun. 178, 745–754 (2008). arXiv:0710.2067

    Article  ADS  MATH  Google Scholar 

  112. F. Mahmoudi, Comput. Phys. Commun. 180, 1579–1613 (2009). arXiv:0808.3144

    Article  ADS  Google Scholar 

  113. F. Mahmoudi, Comput. Phys. Commun. 180, 1718–1719 (2009)

    Article  ADS  Google Scholar 

  114. M. Misiak, M. Steinhauser, Nucl. Phys. B 764, 62–82 (2007). hep-ph/0609241

    Article  ADS  Google Scholar 

  115. M. Benayoun, P. David, L. DelBuono, F. Jegerlehner, arXiv:1210.7184

  116. G. Degrassi, G. Giudice, Phys. Rev. D 58, 053007 (1998). hep-ph/9803384

    Article  ADS  Google Scholar 

  117. S. Heinemeyer, D. Stöckinger, G. Weiglein, Nucl. Phys. B 690, 62–80 (2004). hep-ph/0312264

    Article  ADS  MATH  Google Scholar 

  118. S. Heinemeyer, D. Stöckinger, G. Weiglein, Nucl. Phys. B 699, 103–123 (2004). hep-ph/0405255

    Article  ADS  MATH  Google Scholar 

  119. D. Stöckinger, J. Phys. G 34, R45–R92 (2007). hep-ph/0609168

    Article  ADS  Google Scholar 

  120. Tevatron Electroweak Working Group for the CDF Collaboration, DØ Collaboration, arXiv:1204.0042

  121. http://lepewwg.web.cern.ch/LEPEWWG/

  122. M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev. D 69, 053006 (2004). hep-ph/0311148

    Article  ADS  Google Scholar 

  123. A. Djouadi, P. Gambino, S. Heinemeyer, W. Hollik, C. Junger et al., Phys. Rev. Lett. 78, 3626–3629 (1997). hep-ph/9612363

    Article  ADS  Google Scholar 

  124. A. Djouadi, P. Gambino, S. Heinemeyer, W. Hollik, C. Junger et al., Phys. Rev. D 57, 4179–4196 (1998). hep-ph/9710438

    Article  ADS  Google Scholar 

  125. S. Heinemeyer, W. Hollik, D. Stöckinger, A. Weber, G. Weiglein, J. High Energy Phys. 0608, 052 (2006). hep-ph/0604147

    Article  ADS  Google Scholar 

  126. G. Weiglein, L. Zeune, In preparation

  127. Y. Amhis et al. (Heavy Flavor Averaging Group), arXiv:1207.1158

  128. LHCb Collaboration, LHCb-CONF-2012-017

  129. CMS Collaboration, CMS-PAS-BPH-12-009

  130. ATLAS Collaboration, ATLAS-CONF-2012-061

  131. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Eur. Phys. J. C 71, 1515 (2011). arXiv:1010.4180

    Article  ADS  Google Scholar 

  132. G. Bennett et al. (Muon g-2 Collaboration), Phys. Rev. Lett. 92, 161802 (2004). hep-ex/0401008

    Article  ADS  Google Scholar 

  133. G. Bennett et al. (Muon g-2 Collaboration), Phys. Rev. D 73, 072003 (2006). hep-ex/0602035

    Article  ADS  Google Scholar 

  134. S. Gennai, S. Heinemeyer, A. Kalinowski, R. Kinnunen, S. Lehti et al., Eur. Phys. J. C 52, 383–395 (2007). arXiv:0704.0619

    Article  ADS  Google Scholar 

  135. G. Aad et al. (ATLAS Collaboration), J. High Energy Phys. 1206, 039 (2012). arXiv:1204.2760

    Article  ADS  Google Scholar 

  136. S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1207, 143 (2012). arXiv:1205.5736

    Article  ADS  Google Scholar 

  137. J. Frere, D. Jones, S. Raby, Nucl. Phys. B 222, 11 (1983)

    Article  ADS  Google Scholar 

  138. M. Claudson, L.J. Hall, I. Hinchliffe, Nucl. Phys. B 228, 501 (1983)

    Article  ADS  Google Scholar 

  139. C. Kounnas, A. Lahanas, D.V. Nanopoulos, M. Quiros, Nucl. Phys. B 236, 438 (1984)

    Article  ADS  Google Scholar 

  140. J. Gunion, H. Haber, M. Sher, Nucl. Phys. B 306, 1 (1988)

    Article  ADS  Google Scholar 

  141. J. Casas, A. Lleyda, C. Munoz, Nucl. Phys. B 471, 3–58 (1996). hep-ph/9507294

    Article  ADS  Google Scholar 

  142. P. Langacker, N. Polonsky, Phys. Rev. D 50, 2199–2217 (1994). hep-ph/9403306

    Article  ADS  Google Scholar 

  143. A. Strumia, Nucl. Phys. B 482, 24–38 (1996). hep-ph/9604417

    Article  ADS  Google Scholar 

  144. R. Hempfling, Phys. Rev. D 49, 6168–6172 (1994)

    Article  ADS  Google Scholar 

  145. L.J. Hall, R. Rattazzi, U. Sarid, Phys. Rev. D 50, 7048–7065 (1994). hep-ph/9306309

    Article  ADS  Google Scholar 

  146. M.S. Carena, M. Olechowski, S. Pokorski, C. Wagner, Nucl. Phys. B 426, 269–300 (1994). hep-ph/9402253

    Article  ADS  Google Scholar 

  147. M.S. Carena, D. Garcia, U. Nierste, C.E.M. Wagner, Nucl. Phys. B 577, 88–120 (2000). hep-ph/9912516

    Article  ADS  Google Scholar 

  148. D. Noth, M. Spira, Phys. Rev. Lett. 101, 181801 (2008). arXiv:0808.0087

    Article  ADS  Google Scholar 

  149. ATLAS Collaboration, Contribution to the ESPP2012, ATL-PHYS-PUB-2012-004, http://indico.cern.ch/contributionDisplay.py?contribId=174&confId=175067

  150. CMS Collaboration, Contribution to the ESPP2012, http://indico.cern.ch/abstractDisplay.py/getAttachedFile?abstractId=144&resId=1&confId=175067

  151. J.E. Brau, R.M. Godbole, F.R.L. Diberder, M. Thomson, H. Weerts et al., arXiv:1210.0202

  152. S. Berge, W. Bernreuther, J. Ziethe, Phys. Rev. Lett. 100, 171605 (2008). arXiv:0801.2297

    Article  ADS  Google Scholar 

  153. S. Berge, W. Bernreuther, B. Niepelt, H. Spiesberger, Phys. Rev. D 84, 116003 (2011). arXiv:1108.0670

    Article  ADS  Google Scholar 

  154. G. Weiglein et al. (LHC/LC Study Group), Phys. Rep. 426, 47–358 (2006). hep-ph/0410364

    Article  ADS  Google Scholar 

  155. K. Desch, E. Gross, S. Heinemeyer, G. Weiglein, L. Zivkovic, J. High Energy Phys. 0409, 062 (2004). hep-ph/0406322

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Collaborative Research Center SFB676 of the DFG, “Particles, Strings, and the Early Universe”. It has also been partially funded by the Helmholtz Alliance “Physics at the Terascale”. The work of S.H. was partially supported by CICYT (grant FPA 2010–22163-C02-01) and by the Spanish MICINN’s Consolider-Ingenio 2010 Programme under grant MultiDark CSD2009-00064. The research of O.S. is supported by the Swedish Research Council (VR) through the Oskar Klein Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Stål.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bechtle, P., Heinemeyer, S., Stål, O. et al. MSSM interpretations of the LHC discovery: light or heavy Higgs?. Eur. Phys. J. C 73, 2354 (2013). https://doi.org/10.1140/epjc/s10052-013-2354-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2354-5

Keywords

Navigation