Skip to main content
Log in

Tradeoff between smoother and sooner “little rip”

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

There exist dark-energy models that predict the occurrence of a “little rip”. At the point of a little rip the Hubble rate and its cosmic time derivative approach infinity, which is quite similar to the big rip singularity except that the former happens at infinite future and the latter at a finite cosmic time; both events happen in the future and at high energies. In the case of the big rip, a combination of ultra-violet and infra-red effects can smooth its doomsday. We therefore wonder if the little rip can also be smoothed in a similar way. We address the ultra-violet and infra-red effects in general relativity through a brane-world model with a Gauss–Bonnet term in the bulk and an induced gravity term on the brane. We find that the little rip is transformed in this case into a sudden singularity, or a “big brake”. Even though the big brake is smoother than the little rip in that the Hubble rate is finite at the event, the trade-off is that it takes place sooner, at a finite cosmic time. In our estimate, the big brake would happen at roughly 1300 Gyr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For an alternative classifications of dark energy related singularities, see the Refs. [14] and [15].

  2. We leave the induced gravity parameter γ arbitrary and do not set it to unity as was done in Ref. [53].

  3. Notice that we have excluded the limiting case where μ 2=1/4α corresponding to the Chern–Simons gravity, because in that case a homogeneous and isotropic brane cannot be embedded in the bulk [54].

  4. Phantom energy does not always imply future singularities as was shown, for example, in Ref. [40].

References

  1. S. Perlmutter et al. (Supernova Cosmology Project Collaboration), Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  2. A.G. Riess et al. (Supernova Search Team Collaboration), Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  3. G. Hinshaw et al. (WMAP Collaboration), arXiv:1212.5226 [astro-ph.CO] (2012)

  4. M. Tegmark et al. (SDSS Collaboration), Phys. Rev. D 69, 103501 (2004)

    Article  ADS  Google Scholar 

  5. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)

    ADS  Google Scholar 

  7. T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Phys. Rep. 513, 1 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  8. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. S.M. Carroll, Living Rev. Relativ. 4, 1 (2001)

    ADS  Google Scholar 

  10. R.R. Caldwell, Phys. Lett. B 545, 23 (2002)

    Article  ADS  Google Scholar 

  11. S. ’i. Nojiri, S.D. Odintsov, S. Tsujikawa, Phys. Rev. D 71, 063004 (2005)

    Article  ADS  Google Scholar 

  12. S. ’i. Nojiri, S.D. Odintsov, Phys. Rev. D 78, 046006 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  13. K. Bamba, S. ’i. Nojiri, S.D. Odintsov, J. Cosmol. Astropart. Phys. 0810, 045 (2008)

    Article  ADS  Google Scholar 

  14. L. Fernández-Jambrina, R. Lazkoz, Phys. Rev. D 70, 121503 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  15. L. Fernández-Jambrina, R. Lazkoz, Phys. Rev. D 74, 064030 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  16. A.A. Starobinsky, Gravit. Cosmol. 6, 157 (2000)

    ADS  MATH  Google Scholar 

  17. S.M. Carroll, M. Hoffman, M. Trodden, Phys. Rev. D 68, 023509 (2003)

    Article  ADS  Google Scholar 

  18. R.R. Caldwell, M. Kamionkowski, N.N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003)

    Article  ADS  Google Scholar 

  19. L.P. Chimento, R. Lazkoz, Phys. Rev. Lett. 91, 211301 (2003)

    Article  ADS  Google Scholar 

  20. M.P. Dąbrowski, T. Stachowiak, M. Szydłowski, Phys. Rev. D 68, 103519 (2003)

    Article  ADS  Google Scholar 

  21. P.F. González-Díaz, Phys. Lett. B 586, 1 (2004)

    Article  ADS  Google Scholar 

  22. P.F. González-Díaz, Phys. Rev. D 69, 063522 (2004)

    Article  ADS  Google Scholar 

  23. S. ’i. Nojiri, S.D. Odintsov, Phys. Rev. D 70, 103522 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  24. J.D. Barrow, Class. Quantum Gravity 21, L79 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. V. Gorini, A.Y. Kamenshchik, U. Moschella, V. Pasquier, Phys. Rev. D 69, 123512 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  26. S. ’i. Nojiri, S.D. Odintsov, Phys. Rev. D 72, 023003 (2005)

    Article  ADS  Google Scholar 

  27. M. Bouhmadi-López, P.F. González-Díaz, P. Martín-Moruno, Phys. Lett. B 659, 1 (2008)

    Article  ADS  Google Scholar 

  28. M. Bouhmadi-López, P.F. González-Díaz, P. Martín-Moruno, Int. J. Mod. Phys. D 17, 2269 (2008)

    Article  ADS  MATH  Google Scholar 

  29. T. Ruzmaikina, A.A. Ruzmaikin, Sov. Phys. JETP 30, 372 (1970)

    ADS  Google Scholar 

  30. H. Štefančić, Phys. Rev. D 71, 084024 (2005)

    Article  Google Scholar 

  31. M. Bouhmadi-López, Nucl. Phys. B 797, 78 (2008)

    Article  ADS  Google Scholar 

  32. P.H. Frampton, K.J. Ludwick, R.J. Scherrer, Phys. Rev. D 84, 063003 (2011)

    Article  ADS  Google Scholar 

  33. I. Brevik, E. Elizalde, S. ’i. Nojiri, S.D. Odintsov, Phys. Rev. D 84, 103508 (2011)

    Article  ADS  Google Scholar 

  34. P.H. Frampton, K.J. Ludwick, S. ’i. Nojiri, S.D. Odintsov, R.J. Scherrer, Phys. Lett. B 708, 204 (2012)

    Article  ADS  Google Scholar 

  35. S. ’i. Nojiri, S.D. Odintsov, D. Sáez-Gómez, AIP Conf. Proc. 1458, 207 (2011)

    ADS  Google Scholar 

  36. M.P. Dąbrowski, T. Denkieiwcz, Phys. Rev. D 79, 063521 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  37. L. Fernández-Jambrina, J. Phys. Conf. Ser. 314, 012061 (2011)

    Article  ADS  Google Scholar 

  38. P.H. Frampton, K.J. Ludwick, R.J. Scherrer, Phys. Rev. D 85, 083001 (2012)

    Article  ADS  Google Scholar 

  39. M.-H. Belkacemi, M. Bouhmadi-López, A. Errahmani, T. Ouali, Phys. Rev. D 85, 083503 (2012)

    Article  ADS  Google Scholar 

  40. M. Bouhmadi-López, J.A. Jiménez Madrid, J. Cosmol. Astropart. Phys. 0505, 005 (2005)

    Article  ADS  Google Scholar 

  41. E. Elizalde, S. ’i. Nojiri, S.D. Odintsov, Phys. Rev. D 70, 043539 (2004)

    Article  ADS  Google Scholar 

  42. M.C.B. Abdalla, S. ’i. Nojiri, S.D. Odintsov, Class. Quantum Gravity 22, L35 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. M.P. Dąbrowski, C. Kiefer, B. Sandhöfer, Phys. Rev. D 74, 044022 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  44. A. Kamenshchik, C. Kiefer, B. Sandhöfer, Phys. Rev. D 76, 064032 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  45. M. Bouhmadi-López, C. Kiefer, B. Sandhöfer, P.V. Moniz, Phys. Rev. D 79, 124035 (2009)

    Article  ADS  Google Scholar 

  46. M. Sami, P. Singh, S. Tsujikawa, Phys. Rev. D 74, 043514 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  47. M. Bouhmadi-López, A. Ferrera, J. Cosmol. Astropart. Phys. 0810, 011 (2008)

    Article  ADS  Google Scholar 

  48. M.R. Setare, E.N. Saridakis, J. Cosmol. Astropart. Phys. 0903, 002 (2009)

    Article  ADS  Google Scholar 

  49. M. Bouhmadi-López, Y. Tavakoli, P.V. Moniz, J. Cosmol. Astropart. Phys. 1004, 016 (2010)

    Article  ADS  Google Scholar 

  50. H. Maeda, Phys. Rev. D 85, 124012 (2012)

    Article  ADS  Google Scholar 

  51. G.R. Dvali, G. Gabadadze, M. Porrati, Phys. Lett. B 485, 208 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. G.R. Dvali, G. Gabadadze, Phys. Rev. D 63, 065007 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  53. G. Kofinas, R. Maartens, E. Papantonopoulos, J. High Energy Phys. 0310, 066 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  54. C. Charmousis, J.F. Dufaux, Class. Quantum Gravity 19, 4671 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. M. Bouhmadi-López, P.V. Moniz, Phys. Rev. D 78, 084019 (2008)

    Article  ADS  Google Scholar 

  56. M. Bouhmadi-López, A. Errahmani, T. Ouali, Phys. Rev. D 84, 083508 (2011)

    Article  ADS  Google Scholar 

  57. M. Bouhmadi-López, P. Chen, Y.-W. Liu, Phys. Rev. D 86, 083531 (2012)

    Article  ADS  Google Scholar 

  58. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1980)

    Google Scholar 

  59. J.D. Barrow, Phys. Lett. B 235, 40 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  60. J.D. Barrow, Phys. Lett. B 180, 335 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  61. J.D. Barrow, Nucl. Phys. B 310, 743 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  62. Y. Shtanov, V. Sahni, Class. Quantum Gravity 19, L101 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  63. M. Bouhmadi-López, L.P. Chimento, Phys. Rev. D 82, 103506 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.B.L. is supported by the Basque Foundation for Science IKERBASQUE. She also wishes to acknowledge the hospitality of LeCosPA Center at the National Taiwan University during the completion of part of this work and the support of the Portuguese Agency “Fundação para a Ciência e Tecnologia” through PTDC/FIS/111032/2009. P.C. and Y.W.L. are supported by Taiwan National Science Council under Project No. NSC 97-2112-M-002-026-MY3 and by Taiwan’s National Center for Theoretical Sciences (NCTS). P.C. is in addition supported by US Department of Energy under Contract No. DE-AC03-76SF00515. This work has been supported by a Spanish-Taiwanese Interchange Program with reference 2011TW0010 (Spain) and NSC 101-2923-M-002-006-MY3 (Taiwan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariam Bouhmadi-López.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouhmadi-López, M., Chen, P. & Liu, YW. Tradeoff between smoother and sooner “little rip”. Eur. Phys. J. C 73, 2546 (2013). https://doi.org/10.1140/epjc/s10052-013-2546-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2546-z

Keywords

Navigation