Skip to main content
Log in

Instanton wave and M-wave in multiple M5-branes system

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We consider the non-abelian self-dual two-form theory (Chu and Ko, J. High Energy Phys. 1205:028, 2012) and find new exact solutions. Our solutions are supported by Yang–Mills (anti)instantons in four dimensions and describe a wave moving in null directions. We argue and provide evidence that these instanton wave solutions correspond to an M-wave (MW) on the worldvolume of multiple M5-branes. When dimensionally reduced on a circle, the MW/M5 system is reduced to the D0/D4 system with the D0-branes represented by the Yang–Mills instanton of the D4-branes Yang–Mills gauge theory. We show that this picture is precisely reproduced by the dimensional reduction of our instanton wave solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Similar forms of gauge symmetry were also considered by [13], as well as [14] where an extra 3-form potential was introduced in addition to the propagating 1-form gauge potential. The latter formulation were further developed in [1517] and provides a construction for a class of (1,0) superconformal models in six dimensions.

  2. The philosophy is very similar to the BLG [1820] and ABJM model [21] of multiple M2-branes where a set of non-propagating Chern–Simons gauge fields was introduced in order to allow for a simple representation of the highly non-linear and non-local self interactions of the matter fields of the \({\mathcal{N}}=8\) supermultiplet in three dimensions.

References

  1. C.-S. Chu, S.-L. Ko, Non-Abelian action for multiple five-branes with self-dual tensors. J. High Energy Phys. 1205, 028 (2012). 1203.4224 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  2. E. Witten, Some comments on string dynamics, in Future Perspectives in String Theory, Los Angeles, (1995), pp. 501–523. hep-th/9507121

    Google Scholar 

  3. J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998). hep-th/9711200

    MathSciNet  ADS  MATH  Google Scholar 

  4. P.S. Howe, E. Sezgin, D=11, p=5. Phys. Lett. B 394, 62 (1997). hep-th/9611008

    Article  MathSciNet  ADS  Google Scholar 

  5. P.S. Howe, E. Sezgin, P.C. West, Covariant field equations of the M theory five-brane. Phys. Lett. B 399, 49 (1997). hep-th/9702008

    Article  MathSciNet  ADS  Google Scholar 

  6. M. Perry, J.H. Schwarz, Interacting chiral gauge fields in six-dimensions and born-infeld theory. Nucl. Phys. B 489, 47–64 (1997). hep-th/9611065

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. M. Aganagic, J. Park, C. Popescu, J.H. Schwarz, World volume action of the M theory five-brane. Nucl. Phys. B 496, 191–214 (1997). hep-th/9701166

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. P. Pasti, D.P. Sorokin, M. Tonin, On Lorentz invariant actions for chiral p forms. Phys. Rev. D 55, 6292–6298 (1997). hep-th/9611100

    Article  MathSciNet  ADS  Google Scholar 

  9. P. Pasti, D.P. Sorokin, M. Tonin, Covariant action for a D=11 five-brane with the chiral field. Phys. Lett. B 398, 41–46 (1997). hep-th/9701037

    Article  MathSciNet  ADS  Google Scholar 

  10. I.A. Bandos, K. Lechner, A. Nurmagambetov, P. Pasti, D.P. Sorokin, M. Tonin, Covariant action for the superfive-brane of M theory. Phys. Rev. Lett. 78, 4332–4334 (1997). hep-th/9701149

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. C.S. Chu, D.J. Smith, Multiple self-dual strings on M5-branes. J. High Energy Phys. 1001, 001 (2010). 0909.2333 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  12. C.-S. Chu, A theory of non-Abelian tensor gauge field with non-Abelian gauge symmetry G×G. 1108.5131 [hep-th]

  13. P.-M. Ho, K.-W. Huang, Y. Matsuo, A non-Abelian self-dual gauge theory in 5+1 dimensions. J. High Energy Phys. 1107, 021 (2011). 1104.4040 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  14. H. Samtleben, E. Sezgin, R. Wimmer, (1,0) superconformal models in six dimensions. J. High Energy Phys. 1112, 062 (2011). 1108.4060 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  15. H. Samtleben, E. Sezgin, R. Wimmer, L. Wulff, New superconformal models in six dimensions: Gauge group and representation structure, in PoS CORFU 2011, vol. 071, (2011). 1204.0542 [hep-th]

    Google Scholar 

  16. H. Samtleben, E. Sezgin, R. Wimmer, Six-dimensional superconformal couplings of non-Abelian tensor and hypermultiplets. J. High Energy Phys. 1303, 068 (2013). 1212.5199 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  17. I. Bandos, H. Samtleben, D. Sorokin, Duality-symmetric actions for non-Abelian tensor fields. 1305.1304 [hep-th]

  18. J. Bagger, N. Lambert, Modeling multiple M2’s. Phys. Rev. D 75, 045020 (2007). hep-th/0611108

    Article  MathSciNet  ADS  Google Scholar 

  19. A. Gustavsson, Algebraic structures on parallel M2-branes. 0709.1260 [hep-th]

  20. J. Bagger, N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev. D 77, 065008 (2008). 0711.0955 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  21. O. Aharony, O. Bergman, D.L. Jafferis, J. Maldacena, N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals. J. High Energy Phys. 0810, 091 (2008). 0806.1218 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  22. C.-S. Chu, S.-L. Ko, P. Vanichchapongjaroen, Non-Abelian self-dual string solutions. J. High Energy Phys. 1209, 018 (2012). 1207.1095 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  23. C.-S. Chu, P. Vanichchapongjaroen, Non-Abelian self-dual string and M2-M5 branes intersection in supergravity. 1304.4322 [hep-th]

  24. V. Niarchos, K. Siampos, M2-M5 blackfold funnels. J. High Energy Phys. 1206, 175 (2012). 1205.1535 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  25. C.M. Hull, Exact pp wave solutions of eleven-dimensional supergravity. Phys. Lett. B 139, 39 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  26. A.A. Tseytlin, Harmonic superpositions of M-branes. Nucl. Phys. B 475, 149 (1996). hep-th/9604035

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. M.R. Douglas, Branes within branes, in Strings, Branes and Dualities, Cargese (1997), pp. 267–275. hep-th/9512077

    Google Scholar 

  28. E. Witten, Small instantons in string theory. Nucl. Phys. B 460, 541 (1996). hep-th/9511030

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. O. Barwald, N.D. Lambert, P.C. West, On the energy momentum tensor of the M theory five-brane. Phys. Lett. B 459, 125 (1999). hep-th/9904097

    Article  MathSciNet  ADS  Google Scholar 

  30. N. Lambert, P. Richmond, (2,0) supersymmetry and the light-cone description of M5-branes. J. High Energy Phys. 1202, 013 (2012). 1109.6454 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  31. A. Fayyazuddin, D.J. Smith, Localized intersections of M5-branes and four-dimensional superconformal field theories. J. High Energy Phys. 9904, 030 (1999). hep-th/9902210

    Article  MathSciNet  ADS  Google Scholar 

  32. D.J. Smith, Intersecting brane solutions in string and M-theory. Class. Quantum Gravity 20, R233 (2003). hep-th/0210157

    Article  ADS  MATH  Google Scholar 

  33. A. Basu, J.A. Harvey, The M2–M5 brane system and a generalized Nahm’s equation. Nucl. Phys. B 713, 136 (2005). hep-th/0412310

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. C.-S. Chu, D.J. Smith, Towards the quantum geometry of the M5-brane in a constant C-field from multiple membranes. J. High Energy Phys. 0904, 097 (2009). 0901.1847 [hep-th]

    Article  ADS  Google Scholar 

  35. C.S. Chu, P.M. Ho, Noncommutative open string and D-brane. Nucl. Phys. B 550, 151 (1999). hep-th/9812219

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. C.S. Chu, P.M. Ho, Constrained quantization of open string in background b field and noncommutative D-brane. Nucl. Phys. B 568, 447 (2000). hep-th/9906192

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. C.S. Chu, Noncommutative open string: neutral and charged. hep-th/0001144

  38. V. Schomerus, D-branes and deformation quantization. J. High Energy Phys. 9906, 030 (1999). hep-th/9903205

    Article  MathSciNet  ADS  Google Scholar 

  39. N. Seiberg, E. Witten, String theory and noncommutative geometry. J. High Energy Phys. 9909, 032 (1999). hep-th/9908142

    Article  MathSciNet  ADS  Google Scholar 

  40. C.-S. Chu, G.S. Sehmbi, D1-strings in large RR 3-form flux, quantum Nambu geometry and M5-branes in C-field. J. Phys. A 45, 055401 (2012). 1110.2687 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  41. M.R. Douglas, On D=5 super Yang–Mills theory and (2,0) theory. J. High Energy Phys. 1102, 011 (2011). 1012.2880 [hep-th]

    ADS  Google Scholar 

  42. N. Lambert, C. Papageorgakis, M. Schmidt-Sommerfeld, M5-branes, D4-branes and quantum 5D super-Yang–Mills. J. High Energy Phys. 1101, 083 (2011). 1012.2882 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  43. O. Aharony, M. Berkooz, S. Kachru, N. Seiberg, E. Silverstein, Matrix description of interacting theories in six-dimensions. Adv. Theor. Math. Phys. 1, 148–157 (1998). hep-th/9707079

    MathSciNet  Google Scholar 

  44. O. Aharony, M. Berkooz, N. Seiberg, Light-cone description of (2,0) superconformal theories in six dimensions. Adv. Theor. Math. Phys. 2, 119–153 (1998). hep-th/9712117

    MathSciNet  MATH  Google Scholar 

  45. N. Arkani-Hamed, A.G. Cohen, D.B. Kaplan, A. Karch, L. Motl, Deconstructing (2,0) and little string theories. J. High Energy Phys. 01, 083 (2003). hep-th/0110146 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  46. R.S. Ward, Integrable and solvable systems, and relations among them. Philos. Trans. R. Soc. Lond. A 315, 451 (1985)

    Article  ADS  MATH  Google Scholar 

  47. C. Saemann, M. Wolf, On twistors and conformal field theories from six dimensions. J. Math. Phys. 54, 013507 (2013). 1111.2539 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  48. L.J. Mason, R.A. Reid-Edwards, A. Taghavi-Chabert, Conformal field theories in six-dimensional twistor space. J. Geom. Phys. 62, 2353 (2012). 1111.2585 [hep-th]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. C. Saemann, M. Wolf, Non-Abelian tensor multiplet equations from twistor space. 1205.3108 [hep-th]

  50. C. Saemann, M-brane models and loop spaces. Mod. Phys. Lett. A 27, 1230019 (2012). 1206.0432 [hep-th]

    Article  ADS  Google Scholar 

  51. C. Saemann, M. Wolf, Six-dimensional superconformal field theories from principal 3-bundles over twistor space. 1305.4870 [hep-th]

Download references

Acknowledgements

It is our pleasure to thank Kazuyuki Furuuchi, Sheng-Lan Ko, Christian Saemann, Richard Szabo, Pichet Vanichchapongjaroen and Martin Wolf for discussions. CSC is supported in part by the STFC Consolidated Grant ST/J000426/1 and by the grant 101-2112-M-007-021-MY3 of the National Science Council, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong-Sun Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, CS., Isono, H. Instanton wave and M-wave in multiple M5-branes system. Eur. Phys. J. C 73, 2586 (2013). https://doi.org/10.1140/epjc/s10052-013-2586-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2586-4

Keywords

Navigation