Skip to main content
Log in

Search for neutral Higgs bosons in CP-conserving and CP-violating MSSM scenarios

  • experimental physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract.

This report summarizes the final results from the OPAL collaboration on searches for neutral Higgs bosons predicted by the Minimal Supersymmetric Standard Model (MSSM). CP-conserving and, for the first time at LEP, CP-violating scenarios are studied. New scenarios are also included, which aim to set the stage for Higgs searches at future colliders. The results are based on the data collected with the OPAL detector at e + e- centre-of-mass energies up to 209 GeV. The data are consistent with the prediction of the Standard Model with no Higgs boson produced. Model-independent limits are derived for the cross-sections of a number of event topologies motivated by predictions of the MSSM. Limits on Higgs boson masses and other MSSM parameters are obtained for a number of representative MSSM benchmark scenarios. For example, in the CP-conserving scenario m h-max where the MSSM parameters are adjusted to predict the largest range of values for m h at each \(\tan\beta\), and for a top quark mass of 174.3 GeV, the domain \(0.7 < \tan\beta < 1.9\) is excluded at the 95% confidence level and Higgs boson mass limits of m h > 84.5 GeV and m A > 85.0 GeV are obtained. For the CP-violating benchmark scenario CPX which, by construction, enhances the CP-violating effects in the Higgs sector, the domain \(\tan\beta < 2.8\) is excluded but no universal limit can be set on the Higgs boson masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Higgs, Phys. Lett. 12, 132 (1964); F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964)

    Article  Google Scholar 

  2. R. Barate et al. [ALEPH, DELPHI, L3, OPAL Collaborations], Phys. Lett. B 565, 61 (2003)

    Article  Google Scholar 

  3. A. Brignole, G. Degrassi, P. Slavich, F. Zwirner, Nucl. Phys. B 631, 195 (2002); G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133 (2003)

    Google Scholar 

  4. A. Pilaftsis, C.E. Wagner, Nucl. Phys. B 553, 3 (1999)

    Article  Google Scholar 

  5. M. Carena et al. , Nucl. Phys. B 599, 158 (2001)

    Article  Google Scholar 

  6. S. Heinemeyer, W. Hollik, Nucl. Phys. B 474, 32 (1996)

    Article  Google Scholar 

  7. G. Abbiendi et al. [OPAL Collaboration], Eur. Phys. J. C 26, 479 (2003)

    Google Scholar 

  8. G. Abbiendi et al. [OPAL Collaboration], Eur. Phys. J. C 12, 567 (2000)

    Article  Google Scholar 

  9. G. Abbiendi et al. [OPAL Collaboration], Eur. Phys. J. C 7, 407 (1999)

    Article  Google Scholar 

  10. K. Ackerstaff et al. [OPAL Collaboration], Eur. Phys. J. C 1, 425 (1998)

    Article  Google Scholar 

  11. K. Ackerstaff et al. [OPAL Collaboration], Eur. Phys. J. C 5, 19 (1998)

    Article  Google Scholar 

  12. G. Alexander et al. [OPAL Collaboration], Z. Phys. C 73, 189 (1997)

    Article  Google Scholar 

  13. R. Akers et al. [OPAL Collaboration], Z. Phys. C 64, 1 (1994)

    Google Scholar 

  14. A. Heister et al. [ALEPH Collaboration], Phys. Lett. B 526, 191 (2002); J. Abdallah et al. [DELPHI Collaboration], Eur. Phys. J. C 32, 145 (2004); P. Achard et al. [L3 Collaboration], Phys. Lett. B 545, 30 (2002)

    Article  Google Scholar 

  15. T. Affolder et al. [CDF Collaboration], Phys. Rev. Lett. 86, 4472 (2001)

    Article  Google Scholar 

  16. M. Carena, S. Heinemeyer, C.E.M. Wagner, G. Weiglein, hep-ph/0202167

  17. K. Ahmet et al. [OPAL Collaboration], Nucl. Instr. Methods A 305, 275 (1991)

    Google Scholar 

  18. S. Anderson et al. , Nucl. Instr. Methods A 403, 326 (1998).

    Google Scholar 

  19. P. Janot, Physics at LEP2, CERN 96-01 Vol. 2 309

  20. S. Jadach, B.F. Ward, Z. Wás, Comput. Phys. Commun. 130, 260 (2000)

    Article  Google Scholar 

  21. J. Fujimoto et al. , Comp. Phys. Comm. 100, 128 (1997); J. Fujimoto et al. , Physics at LEP2, CERN 96-01, Vol.2, 30

    Article  Google Scholar 

  22. S. Jadach, W. Płaczek,, B.F.L. Ward, Physics at LEP2, CERN 96-01, Vol.2, 286; Phys. Lett. B 390 (1997), 298

    Google Scholar 

  23. E. Budinov et al. , Physics at LEP2, CERN 96-01, Vol.2, 216; R. Engel, J. Ranft, Phys. Rev. D 54, 4244 (1996)

    Article  Google Scholar 

  24. G. Marchesini et al. , Comp. Phys. Comm. 67, 465 (1992); G. Corcella et al. , JHEP 0101, 10 (2001)

    Article  Google Scholar 

  25. J.A.M. Vermaseren, Nucl. Phys. B 229, 347 (1983)

    Article  Google Scholar 

  26. T. Sjöstrand, Comp. Phys. Comm. 82, 74 (1994); T. Sjöstrand, LU TP 95-20

    Article  Google Scholar 

  27. J. Allison et al. , Nucl. Instr. Methods A 317, 47 (1992)

    Google Scholar 

  28. M. Carena, J.R. Ellis, A. Pilaftsis, C.E. Wagner, Phys. Lett. B 495, 155 (2000)

    Article  Google Scholar 

  29. G. Abbiendi et al. [OPAL Collaboration], Eur. Phys. J. C 27, 483 (2003)

    Google Scholar 

  30. G. Abbiendi et al. [OPAL Collaboration], Eur. Phys. J. C 18, 425 (2001)

    Google Scholar 

  31. G. Abbiendi et al. [OPAL Collaboration], hep-ex/0312042, Submitted to Phys. Lett. B

  32. N. Brown, W.J. Stirling, Phys. Lett. B 252, 657 (1990)

    Article  Google Scholar 

  33. K. Ackerstaff et al. [OPAL Collaboration], Eur. Phys. J. C 2, 441 (1998)

    Article  Google Scholar 

  34. G. Parisi, Phys. Lett. B 74, 65 (1978); J.F. Donoghue, F.E. Low, S.Y. Pi, Phys. Rev. D 20, 2759 (1979)

    Article  Google Scholar 

  35. K. Ackerstaff et al. [OPAL Collaboration], Eur. Phys. J. C 2, 213 (1998)

    Article  Google Scholar 

  36. The LEP Collaborations ALEPH, DELPHI, L3, OPAL, the LEP Electroweak Working Group, and the SLD Heavy Flavour and Electroweak Groups, hep-ex/0212036

  37. D.Y. Bardin, P. Christova, M. Jack, L. Kalinovskaya, A. Olchevski, S. Riemann, T. Riemann, Comput. Phys. Commun. 133, 229 (2001)

    Article  MATH  Google Scholar 

  38. G.Abbiendi et al. [OPAL Collaboration], Eur. Phys. J. C 27, 311 (2002)

    Google Scholar 

  39. G. Abbiendi et al. [OPAL Collaboration], Eur. Phys. J. C 23, 397 (2002)

    Google Scholar 

  40. P. Cho, M. Misiak, D. Wyler, Phys. Rev. D 54, 3329 (1996); A. Kagan, M. Neubert, Eur. Phys. J. C 7, 5 (1999); K. Chetyrkin, M. Misiak, M. Munz, Phys. Lett. B 400, 206 (1997), [Erratum-ibid. 425, 414 (1998)]; P. Gambino, M. Misiak, Nucl. Phys. B 611, 338 (2001); J.R. Ellis, T. Falk, G. Ganis, K.A. Olive, M. Srednicki, Phys. Lett. B 510, 236 (2001)

    Article  Google Scholar 

  41. R. Barate et al. [ALEPH Collaboration], Phys. Lett. B 429, 169 (1998); S. Chen et al. [CLEO Collaboration], Phys. Rev. Lett. 87, 251807 (2001); K. Abe et al. [Belle Collaboration], Phys. Lett. B 511, 151 (2001); B. Aubert et al. [BABAR Collaboration], hep-ex/0207074; hep-ex/0207076

    Article  Google Scholar 

  42. F.A. Berends, R. Kleiss, Nucl. Phys. B 260, 32 (1985)

    Article  Google Scholar 

  43. D.E. Groom Eur. Phys. J. C 15, 1 (2000), available on the PDG WWW pages http://pdg.lbl.gov/http://pdg.lbl.gov/

  44. M. Carena, S. Heinemeyer, C.E.M. Wagner, G. Weiglein, hep-ph/9912223

  45. S. Heinemeyer, W. Hollik, G. Weiglein, Comp. Phys. Comm. 124, 76 (2000); Also see http://www.feynhiggs.dehttp://www.feynhiggs.de

    Article  MATH  Google Scholar 

  46. M. Frank, S. Heinemeyer, W. Hollik, G. Weiglein, hep-ph/0212037 Also see http://www.feynhiggs.dehttp://www.feynhiggs.de

  47. S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. Jour. C 9, 343 (1999)

    Article  Google Scholar 

  48. S. Heinemeyer, W. Hollik, G. Weiglein, Phys. Rev. D 58, 091701 (1998), Phys. Lett. B 440, 296 (1998), hep-ph/9807423; JHEP 0006, 009 (2000)

    Article  Google Scholar 

  49. M. Carena, M. Quirós, C.E.M. Wagner, Nucl. Phys. B 461, 407 (1996)

    Article  Google Scholar 

  50. M. Carena, S. Mrenna, C. Wagner, Phys. Rev. D 60, 075010 (1999)

    Article  Google Scholar 

  51. M. Carena, H.E. Haber, S. Heinemeyer, W. Hollik, C.E.M. Wagner, G. Weiglein, Nucl. Phys. B 580, 29 (2000)

    Article  Google Scholar 

  52. J.R. Espinosa, R.-J. Zhang, JHEP 0003, 026 (2000)

    Google Scholar 

  53. P. Bock et al. [ALEPH, DELPHI, L3 and OPAL Collaborations], CERN-EP-2000-055

  54. G.W. Bennett et al. [Muon g-2 Collaboration], Phys. Rev. Lett. 89, 101804 (2002) [Erratum-ibid. 89, 129903 (2002)]

    Article  Google Scholar 

  55. M. Carena, J.R. Ellis, A. Pilaftsis, C.E. Wagner, Nucl. Phys. B 586, 92 (2000)

    Article  Google Scholar 

  56. E.D. Commins, S.B. Ross, D. DeMille, B.C. Regan, Phys. Rev. A 50, 2960 (1994)

    Article  Google Scholar 

  57. P.G. Harris et al. , Phys. Rev. Lett. 82, 904 (1999)

    Article  Google Scholar 

Download references

Author information

Consortia

Additional information

Received: 6 April 2004, Revised: 8 June 2004, Published online: 12 August 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

The OPAL Collaboration. Search for neutral Higgs bosons in CP-conserving and CP-violating MSSM scenarios. Eur. Phys. J. C 37, 49–78 (2004). https://doi.org/10.1140/epjc/s2004-01962-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2004-01962-6

Keywords

Navigation