Skip to main content
Log in

Abstract.

We calculate from first principles the electronic structure, relaxation and magnetic moments of small Fe particles, by applying the numerical local orbitals method in combination with norm-conserving pseudopotentials. The accuracy of the method in describing elastic properties and magnetic phase diagrams is tested by comparing benchmark results for different phases of crystalline iron to those obtained by an all-electron method. Our calculations for the bipyramidal Fe5 cluster confirm previous plane-wave results that predicted a non-collinear magnetic structure. For larger bcc-related (Fe35, Fe59) and fcc-related (Fe38, Fe43, Fe55, Fe62) particles, a larger inward relaxation of outer shells has been found in all cases, accompanied by an increase of local magnetic moments on the surface to beyond 3 \(\mu_{\scriptstyle{B}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.M.L. Billas, J.A. Becker, A. Châtelain, W.A. de Heer, Phys. Rev. Lett. 71, 4067 (1993)

    Article  Google Scholar 

  2. I.M.L. Billas, A. Châtelain, W.A. de Heer, Science 265, 1682 (1994)

    Google Scholar 

  3. D. Gerion, A. Hirt, I.M.L. Billas, A. Châtelain, W.A. de Heer, Phys. Rev. B 62, 7491 (2000)

    Article  Google Scholar 

  4. O.B. Christensen, M.L. Cohen, Phys. Rev. B 47, 13643 (1993)

    Article  Google Scholar 

  5. N.A. Besley, R.L. Johnston, A.J. Stace, J. Uppenbrink, J. Mol. Struct. (Theochem) 341, 75 (1995)

    Article  Google Scholar 

  6. G.M. Pastor, J. Dorantes-Dávila, K.H. Bennemann, Phys. Rev. B 40, 7642 (1989)

    Article  Google Scholar 

  7. G.M. Pastor, R. Hirsch, B. Mühlschlegel, Phys. Rev. B 53, 10382 (1996)

    Article  Google Scholar 

  8. A.N. Andriotis, N. Lathiotakis, M. Menon, Chem. Phys. Lett. 260, 15 (1996)

    Article  Google Scholar 

  9. A.N. Andriotis, N.N. Lathiotakis, M. Menon, Europhys. Lett. 36, 37 (1996)

    Google Scholar 

  10. A.N. Andriotis, M. Menon, Phys. Rev. B 57, 10069 (1998)

    Article  Google Scholar 

  11. S. Bouarab, A. Vega, J.A. Alonso, M.P. Iñiguez, Phys. Rev. B 54, 3003 (1996)

    Article  Google Scholar 

  12. J. Guevara, F. Parisi, A.M. Llois, M. Weissmann, Phys. Rev. B 55, 13283 (1997)

    Article  Google Scholar 

  13. W. Kohn, Rev. Mod. Phys. 71, 1253 (1999)

    Article  Google Scholar 

  14. J.L. Chen, C.S. Wang, K.A. Jackson, M.R. Pederson, Phys. Rev. B 44, 6558 (1991)

    Article  Google Scholar 

  15. M. Castro, D.R. Salahub, Phys. Rev. B 49, 11842 (1994)

    Article  Google Scholar 

  16. M. Castro, C. Jamorski, D.R. Salahub, Chem. Phys. Lett. 271, 133 (1997)

    Article  Google Scholar 

  17. J. Kortus, T. Baruah, M.R. Pederson, C. Ashman, S.N. Khanna, Appl. Phys. Lett. 80, 4193 (2002)

    Article  Google Scholar 

  18. P. Ballone, R.O. Jones, Chem. Phys. Lett. 233, 632 (1995)

    Article  Google Scholar 

  19. T. Oda, A. Pasquarello, R. Car, Phys. Rev. Lett. 80, 3622 (1998)

    Article  Google Scholar 

  20. D. Hobbs, G. Kresse, J. Hafner, Phys. Rev. B 62, 11556 (2000)

    Article  Google Scholar 

  21. J.A. Alonso, Chem. Rev. 100, 637 (2000)

    Article  Google Scholar 

  22. N. Fujima, T. Yamaguchi, Mat. Sci. Engineer. A 217--218, 295 (1996)

  23. H.M. Duan, Q.Q. Zheng, Phys. Lett. A 280, 333 (2001)

    Article  Google Scholar 

  24. D. Sánchez-Portal, P. Ordejón, E. Artacho, J.M. Soler, Int. J. Quant. Chem. 65, 453 (1997)

    Article  Google Scholar 

  25. E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García, J.M. Soler, Phys. Stat. Sol. (b) 215, 809 (1999)

    Article  Google Scholar 

  26. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys. Cond. Matt. 14, 2745 (2002)

    Article  Google Scholar 

  27. J.M. Soler, M.R. Beltrán, K. Michaelian, I.L. Garzón, P. Ordejón, D. Sánchez-Portal, E. Artacho, Phys. Rev. B 61, 5771 (2000)

    Article  Google Scholar 

  28. J. Izquierdo, A. Vega, L.C. Balbás, D. Sánchez-Portal, J. Junquera, E. Artacho, J.M. Soler, P. Ordejón, Phys. Rev. B 61, 13639 (2000)

    Article  Google Scholar 

  29. O. Diéguez, M.M.G. Alemany, C. Rey, P. Ordejón, L.J. Gallego, Phys. Rev. B 63, 205407 (2001)

    Article  Google Scholar 

  30. P. Ordejón, D.A. Drabold, R.M. Martin, M.P. Grumbach, Phys. Rev. B 51, 1456 (1995)

    Article  Google Scholar 

  31. P. Ordejón, E. Artacho, J.M. Soler, Phys. Rev. B 53, R10441 (1996)

  32. S.G. Louie, S. Froyen, M.L. Cohen, Phys. Rev. B 26, 1738 (1982)

    Article  Google Scholar 

  33. We learned that Diéguez found similar results with a basis like ours. Larger extension of basis function is primarily essential for precise evaluation of formation energies and less important for geometry optimizations (P. Ordejón, private communication)

  34. V.L. Moruzzi, P.M. Marcus, K. Schwarz, P. Mohn, Phys. Rev. B 34, 1784 (1986)

    Article  Google Scholar 

  35. V.L. Moruzzi, Phys. Rev. Lett. 57, 2211 (1986)

    Article  Google Scholar 

  36. P. Bagno, O. Jepsen, O. Gunnarsson, Phys. Rev. B 40, 1997 (1989)

    Article  Google Scholar 

  37. T.C. Leung, C.T. Chan, B.N. Harmon, Phys. Rev. B 44, 2923 (1991)

    Article  Google Scholar 

  38. H.C. Herper, E. Hoffmann, P. Entel, Phys. Rev. B 60, 3839 (1999)

    Article  Google Scholar 

  39. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, Vienna University of Technology (2001), improved and updated Unix version of the original copyrighted WIEN-code, which was published by P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, in Comput. Phys. Commun. 59, 339 (1990), http://www.wien2k.at

    Google Scholar 

  40. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  41. Of the methods applied so far for the study of small clusters, the projector augmented-wave method as used in reference [x] has potentially the superior accuracy, as it is an all-electron one and allows to enhance the completeness of the basis in a systematic way. However, the use of frozen core approximation in actual calculations so far keeps its level of accuracy still somehow inferior to, say, FLAPW. The disagreement with accurate all-electron results obtained by a Gaussian-type orbital method for the Fe\(_5\) cluster in reference [17] is not yet understood

  42. A.J. Freeman, C.L. Fu, J. Appl. Phys. 61, 3356 (1987)

    Article  Google Scholar 

  43. M.J.S. Spencer, A. Hung, I.K. Snook, I. Yarovsky, Surf. Sci. 513, 389 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Postnikov.

Additional information

Received: 27 February 2003, Published online: 22 July 2003

PACS:

36.40.Cg Electronic and magnetic properties of clusters - 75.50.Bb Fe and its alloys - 71.15.-m Methods of electronic structure calculations

Rights and permissions

Reprints and permissions

About this article

Cite this article

Postnikov, A.V., Entel, P. & Soler, J.M. Density functional simulation of small Fe nanoparticles. Eur. Phys. J. D 25, 261–270 (2003). https://doi.org/10.1140/epjd/e2003-00209-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2003-00209-3

Keywords

Navigation