Skip to main content

Advertisement

Log in

DC discharges in atmospheric air for bio-decontamination – spectroscopic methods for mechanism identification

  • Topical issue: 23rd Symposium on Plasma Physics and Technology
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Three types of DC electrical discharges in atmospheric air (streamer corona, transient spark and glow discharge) were tested for bio-decontamination of bacteria and yeasts in water solution, and spores on surfaces. Static vs. flowing treatment of contaminated water were compared, in the latter the flowing water either covered the grounded electrode or passed through the high voltage needle electrode. The bacteria were killed most efficiently in the flowing regime by transient spark. Streamer corona was efficient when the treated medium flew through the active corona region. The spores on plastic foil and paper surfaces were successfully inactivated by negative corona. The microbes were handled and their population evaluated by standard microbiology cultivation procedures. The emission spectroscopy of the discharges and TBARS (thiobarbituric acid reactive substances) absorption spectrometric detection of the products of lipid peroxidation of bacterial cell membranes indicated a major role of radicals and reactive oxygen species among the bio-decontamination mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R.S. Sigmond, B. Kurdelova, M. Kurdel, Czech. J. Phys. 49, 405 (1999)

    Google Scholar 

  • T.C. Montie, K. Kelly-Wintenberg, J.R. Roth, IEEE Trans. Plasma Sci. 28, 41 (2000)

    Google Scholar 

  • N.M. Efremov, B.Y. Adamiak, V.I. Blochin, S.J. Dadashev, K.I. Dmitriev, O.P. Gryaznova, V.F. Jusbashev, IEEE Trans. Plasma Sci. 28, 238 (2000)

    Google Scholar 

  • H. Ohkawa, T. Akitsu, M. Tsuji, H. Kimura, M. Kogoma, K. Fukushima, Surf. Coat. Technol. 200, 5829 (2006)

    Google Scholar 

  • A. Sharma, A. Pruden, O. Stan, G.J. Collins, IEEE Trans. Plasma Sci. 34, 1290 (2006)

    Google Scholar 

  • R.E.J. Sladek, E. Stoffels, J. Phys. D: Appl. Phys. 38, 1716 (2005)

    Google Scholar 

  • B.J. Park, K. Takatori, M.H. Lee, D.-W. Han, Y.I. Woo, H.J. Son, J.K. Kim, K.-H. Chung, S.O. Hyun, J.-C. Park, Surf. Coat. Technol. 201, 5738 (2007)

    Google Scholar 

  • N.S. Panikov, S. Paduraru, R. Crowe, P.J. Ricatto, C. Christodoulatos, K. Becker, IEEE Trans. Plasma Sci. 30, 1424 (2002)

    Google Scholar 

  • A.-M. Pointu, A. Ricard, B. Dodet, E. Odic, J. Larbre, M. Ganciu, J. Phys. D: Appl. Phys. 38, 1905 (2005)

  • X. Lu, T. Ye, Y. Cao, Z. Sun, Q. Xiong, Z. Tang, Z. Xiong, J. Hu, Z. Jiang, Y. Pan, J. Appl. Phys. 104, 053309 (2008)

    Google Scholar 

  • R. Brandenburg, J. Ehlbeck, M. Stieber, T.V. Woedtke, J. Zeymer, O. Schlüter, K.-D. Weltmann, Contrib. Plasma Phys. 47, 72 (2007)

    Google Scholar 

  • M. Laroussi, F. Leipold, Int. J. Mass Spectrom. 233, 81 (2004)

    Google Scholar 

  • E. Stoffels, I.E. Kieft, R.E.J. Sladek, L.J.M. Van Den Bedem, E.P. Van Der Laan, M. Steinbuch, Plasma Sources Sci. Technol. 15, S169 (2006)

  • G. Fridman, A.D. Brooks, M. Balasubramanian, A. Fridman, A. Gutsol, V.N. Vasilets, H.G. Friedman, Plasma Process. Polym. 4, 370 (2007)

    Google Scholar 

  • J. Vrajová, L. Chalupová, J. Čech, F. Krčma, P. Sťahel, Plasma Based Removal of Microbial Contamination of Paper, Int. Symp. Plasma Chemistry, Kyoto, Japan, August 2007, Chem. Listy 102, S1445–S1449 (2008)

  • Z. Machala, M. Morvová, E. Marode, I. Morva, J. Phys. D: Appl. Phys. 33, 3198 (2000)

    Google Scholar 

  • Z. Machala, E. Marode, M. Morvová, P. Lukáč, Plasma Process. Polym. 2, 152 (2005)

    Google Scholar 

  • Z. Machala, I. Jedlovský, V. Martišovitš, IEEE Trans. Plasma Sci. 36, 918 (2008)

    Google Scholar 

  • Z. Machala et al., J. Mol. Spectrosc. 243, 194 (2007)

  • R.S. Sigmond, M. Goldman, Corona discharge physics and applications, in Electrical Breakdown and Discharges in Gases, NATO ASI Series B: Physics, edited by E.E. Kunhardt, L.H. Luessen (Plenum: New York 1983), Vol. 89b, pp. 1–64

  • E. Marode, F. Bastien, M. Bakker, J. Appl. Phys. 50, 140 (1979)

    Google Scholar 

  • Z. Machala, E. Marode, C.O. Laux, C.H. Kruger, J. Adv. Oxid. Technol. 7, 133 (2004)

    Google Scholar 

  • A. Jaworek, A. Krupa, T. Czech, J. Phys. D: Appl. Phys. 29, 2439 (1996)

    Google Scholar 

  • P. Lukes, B.R. Locke, J. Phys. D: Appl. Phys. 38, 4074 (2005)

  • P. Baroch, N. Saito, O. Takai, J. Phys D: Appl. Phys. 41, 085207 (2008)

    Google Scholar 

  • P. Bruggeman et al., Plasma Sources Sci. Technol. 17, 025012 (2008)

    Google Scholar 

  • S. Pekarek, V. Kriha, M. Pospisil, I. Viden, J. Phys. D: Appl. Phys. 34, 1 (2001)

    Google Scholar 

  • C.O. Laux, T.G. Spence, C.H. Kruger, R.N. Zare, Plasma Sources Sci. Technol. 12, 125 (2003)

    Google Scholar 

  • C.O. Laux, Radiation and Nonequilibrium Collisional-Radiative Models, von Karman Institute for Fluid Dynamics, Lecture Series 2002-07 (Rhode Saint-Genese, Belgium, 2002)

  • J.B. Feix, B. Kalyaranaman, Photochem. Photobiol. 53, 39 (1991)

    Google Scholar 

  • G.J. Bachowski, T.J. Pintar, A.W. Girotti, Photochem. Photobiol. 53, 481 (1991)

    Google Scholar 

  • P.J. Howden, S.P. Faux, Carcinogenesis 17, 413 (1996)

  • TBARS Assay Kit, Cayman Chemical Company, Catalog 10009055 (2007)

  • M. Babincova, V. Altanerova, C. Altaner, Z. Bacova, P. Babinec, European Cells and Materials 3, 140 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Machala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machala, Z., Jedlovský, I., Chládeková, L. et al. DC discharges in atmospheric air for bio-decontamination – spectroscopic methods for mechanism identification. Eur. Phys. J. D 54, 195–204 (2009). https://doi.org/10.1140/epjd/e2009-00035-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2009-00035-7

PACS

Navigation