Skip to main content
Log in

A split-ring Paul trap for dipolar excitation of the radial ion motion and ellipticity studies

  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

A radial dipolar excitation has been applied to a hyperbolic Paul trap with a segmented ring electrode. In addition, this configuration allowed the generation of an elliptical Paul trap by superimposing the RF trapping field with an electrostatic azimuthally quadrupolar field. The changes in the radial ion motions with respect to the conventional Paul trap are discussed and investigated experimentally. As expected, the formerly degenerated radial eigenfrequencies \(\nu_{r}\) of the standard Paul trap split into two separate resonances at \(\nu_{x}\) and \(\nu_{y}\), while the axial eigenfrequency \(\nu_{z}\) remains unaffected. The new trap design adds flexibility and extends the range of applications of Paul traps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Paul, H. Steinwedel, Z. Naturforsch. A 8, 448 (1953)

    ADS  Google Scholar 

  2. P. Ghosh, Ion Traps (Oxford University Press, Oxford, 1995)

  3. R. March, J. Mass Spectrom. 32, 351 (1997)

    Article  Google Scholar 

  4. T. Udem et al., Phys. Rev. Lett. 86, 4996 (2001)

    Article  ADS  Google Scholar 

  5. W. Oskay et al., Phys. Rev. Lett. 97, 020801 (2006)

    Article  ADS  Google Scholar 

  6. W. Itano et al., Phys. Rev. Lett. 59, 2732 (1987)

    Article  ADS  Google Scholar 

  7. M. Raizen et al., Phys. Rev. A 45, 6493 (1991)

    Article  ADS  Google Scholar 

  8. D. Kielpinski et al., Science 291, 1013 (2001)

    Article  ADS  Google Scholar 

  9. S. Seidelin et al., Phys. Rev. Lett. 96, 253003 (2006)

    Article  ADS  Google Scholar 

  10. Z. Nie et al., Angew. Chem. Int. Ed. 45, 8131 (2006)

    Article  Google Scholar 

  11. A. Trevitt et al., J. Aerosol Sci. 40, 431 (2009)

    Article  Google Scholar 

  12. M. Breitenfeldt et al., Int. J. Mass Spectrom. 275, 34 (2008)

    Article  ADS  Google Scholar 

  13. R. DeVoe, Phys. Rev. A 58, 910 (1998)

    Article  ADS  Google Scholar 

  14. G. Werth, V. Gheorghe, F. Major, Charged Particle Traps II (Springer-Verlag, Berlin, Heidelberg, 2009)

  15. F. Vedel, Int. J. Mass Spectrom. 181, 173 (1998)

    Article  Google Scholar 

  16. R. March, J. Todd, Practical Aspects of Mass Spectrometry (CRC Press, New York, 1995), p. 46

  17. F. Major, V. Gheorghe, G. Werth, Charged Particle Traps (Springer-Verlag, Berlin, Heidelberg, 2005)

  18. N. McLachlen, Theory and Application of Mathieu Functions (Oxford University Press, Oxford, 1951)

  19. R. Alheit et al., Int. J. Mass Spectrom. Ion Proc. 154, 155 (1996)

    Article  ADS  Google Scholar 

  20. N. Konenkov et al., J. Am. Soc. Mass Spectrom. 13, 597 (2002)

    Article  Google Scholar 

  21. P.H. Dawson, Quadrupole Mass Spectrometry and Its Applications (American Instute of Physics, New York, 1995), p. 19

  22. R. March, J. Todd, Practical Aspects of Mass Spectrometry (CRC Press, New York, 1995), pp. 35–36

  23. E. Fischer, Z. Phys. 156, 4 (1959)

    ADS  Google Scholar 

  24. R. Knight, Int. J. Mass Spectrom. Ion. Phys. 51, 127 (1983)

    Article  Google Scholar 

  25. D. Beck et al., Nucl. Instrum. Methods 527, 567 (2004)

    Article  ADS  Google Scholar 

  26. D. Beck et al., A pulsed pattern generator using LabVIEW FPGA, Proceedings of ICALEPCS 2009 (Kobe, Japan, 2010), pp. 215–217

  27. R.L. Alfred, Int. J. Mass Spectrom. Ion Proc. 125, 171 (1993)

    Article  ADS  Google Scholar 

  28. R. March, J. Todd, Quadrupole Ion Trap Mass Spectrometry, 2nd edn. (John Wiley & Sons Inc., Hoboken, New Jersey, 2005), pp. 47–50

  29. X. Chu et al., Int. J. Mass Spectrom. Ion Proc. 173, 107 (1998)

    Article  ADS  Google Scholar 

  30. R. March et al., Int. J. Mass Spectrom. Ion Proc. 99, 109 (1990)

    Article  ADS  Google Scholar 

  31. M. Sudakov et al., J. Am. Soc. Mass Spectrom. 11, 10 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bandelow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandelow, S., Marx, G. & Schweikhard, L. A split-ring Paul trap for dipolar excitation of the radial ion motion and ellipticity studies. Eur. Phys. J. D 61, 315–320 (2011). https://doi.org/10.1140/epjd/e2010-10467-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-10467-5

Keywords

Navigation