Skip to main content
Log in

Controlling Casimir force via coherent driving field

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A four level atom-field configuration is used to investigate the coherent control of Casimir force between two identical plates made up of chiral atomic media and separated by vacuum of width d. The electromagnetic chirality-induced negative refraction is obtained via atomic coherence. The behavior of Casimir force is investigated using Casimir-Lifshitz formula. It is noticed that Casimir force can be switched from repulsive to attractive and vice versa via coherent control of the driving field. This switching feature provides new possibilities of using the repulsive Casimir force in the development of new emerging technologies, such as, micro-electro-mechanical and nano-electro-mechanical systems, i.e., MEMS and NEMS, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 51, 791 (1948)

    Google Scholar 

  2. R. Zhao, Th. Koschny, E.N. Economou, C.M. Soukoulis, Phys. Rev. B 81, 235126 (2010)

    Article  ADS  Google Scholar 

  3. W.J. Kim, A.O. Sushkov, D.A.R. Dalvit, S.K. Lamoreaux, Phys. Rev. Lett. 103, 060401 (2009)

    Article  ADS  Google Scholar 

  4. J.N. Munday, F. Capasso, V.A. Parssegian, Nature 457, 170 (2009), and references therein

    Article  ADS  Google Scholar 

  5. R. Zhao, J. Zhou, Th. Koschny, E.N. Economou, C.M. Soukoulis, Phys. Rev. Lett. 103, 103602 (2009)

    Article  ADS  Google Scholar 

  6. D.A.R. Dalvit, S.K. Lamoreaux, Phys. Rev. Lett. 101, 160403 (2008)

    Article  Google Scholar 

  7. S.K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997)

    Article  ADS  Google Scholar 

  8. U. Mohideen, A. Roy, Phys. Rev. Lett. 81, 4549 (1998)

    Article  ADS  Google Scholar 

  9. A. Ashourvan, M.F. Miri, R. Golestanian, Phys. Rev. Lett. 98, 140801 (2007)

    Article  ADS  Google Scholar 

  10. A. Ashourvan, M.F. Miri, R. Golestanian, J. Phys.: Conf. Ser. 89, 012017 (2007)

    Google Scholar 

  11. Z. Etesami, M.F. Miri, Appl. Phys. Lett. 107, 143110 (2015)

    Article  ADS  Google Scholar 

  12. H.B. Chan, V.A. Aksyuk, R.N. Kleiman, D.J. Bishop, F. Capasso, Science 291, 1941 (2001)

    Article  ADS  Google Scholar 

  13. S.K. Lamoreaux, Rep. Prog. Phys. 68, 201 (2005)

    Article  ADS  Google Scholar 

  14. M. Bordag, U. Mohideen, G.L. Klimchitskaya, V.M. Mostepanenko, Phys. Rep. 353, 1 (2002)

    Article  ADS  Google Scholar 

  15. I.E. Dzyaloshinskii, E.M. Lifshitz, L.P. Pitaevskii, Adv. Phys. 10, 165 (1961)

    Article  ADS  Google Scholar 

  16. T.H. Boyer, Phys. Rev. A 9, 2078 (1974)

    Article  ADS  Google Scholar 

  17. U. Leonhardt, T.G. Philbin, New J. Phys. 9, 254 (2007)

    Article  ADS  Google Scholar 

  18. F.S.S. Rosa, D.A.R. Dalvit, P.W. Milonni, Phys. Rev. Lett. 100, 183602 (2008)

    Article  ADS  Google Scholar 

  19. F.S.S. Rosa, D.A.R. Dalvit, P.W. Milonni, Phys. Rev. A 78, 032117 (2008)

    Article  ADS  Google Scholar 

  20. R. Zhao, J. Zhou, Th. Koschny, E.N. Economou, C.M. Soukoulis, Phys. Rev. B 83, 075108 (2011)

    Article  ADS  Google Scholar 

  21. J.B. Pendry, Science 306, 1353 (2004)

    Article  ADS  Google Scholar 

  22. Z. Li, H. Caglayan, K.B. Allici, M. Kafesaki, C.M. Soukoulis, E. Ozbay, Opt. Express 20, 6146 (2012)

    Article  ADS  Google Scholar 

  23. J. Kästel, M. Fleischhauer, S.F. Yelin, R.L. Walsworth, Phys. Rev. Lett. 99, 073602 (2007)

    Article  ADS  Google Scholar 

  24. Y. Yang, R. Zeng, H. Chen, M.S. Zubairy, Phys. Rev. A 81, 022114 (2010)

    Article  ADS  Google Scholar 

  25. J. Hakami, M.S. Zubairy, J. Phys. B 45, 205502 (2012)

    Article  ADS  Google Scholar 

  26. F.L. Li, A.P. Fang, M. Wang, J. Phys. B 42, 195505 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Lambrecht, P.A.M. Neto, S. Reynaud, New J. Phys. 8, 243 (2006)

    Article  ADS  Google Scholar 

  28. M.G. Silveirinha, S.I. Maslovski, Phys. Rev. Lett. 105, 189301 (2010)

    Article  ADS  Google Scholar 

  29. M.T. Jackel, S. Reynaud, Phys. Lett. A 167, 227 (1992)

    Article  ADS  Google Scholar 

  30. L. Landau, E.M. Lifshitz, Course of Theoretical Physics: Electrodynamics of continuous media (Pergamon Press, 1960)

  31. C.H. Raymond Ooi, Y.Y. Khoo, Phys. Rev. A 86, 062509 (2012)

    Article  ADS  Google Scholar 

  32. E.M. Lifshitz, Sov. Phys. J. Exp. Theor. Phys. 2, 73 (1956)

    Google Scholar 

  33. V.A. Parsegian, G.H. Weiss, J. Adhes. 3, 259 (1972)

    Article  Google Scholar 

  34. Y.S. Barash, Radiophys. Quantum Electron. 21, 1138 (1978)

    Article  ADS  Google Scholar 

  35. B. Wang, J. Zhou, Th. Kochnay, M. Kafesaki, C.M. Soukoulis, J. Opt. A 11, 114003 (10pp) (2009)

    Article  ADS  Google Scholar 

  36. A. Lakhtakia, V.V. Varadan, V.K. Varadan, J. Opt. Soc. Am. A 7, 1654 (1990)

    Article  ADS  Google Scholar 

  37. D.M. Cook, The Theory of Electromagnetics Field (Prentice-Hall, New Jersey, 1975)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajid Qamar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, R., Abbas, M., Ahmad, I. et al. Controlling Casimir force via coherent driving field. Eur. Phys. J. D 70, 95 (2016). https://doi.org/10.1140/epjd/e2016-60642-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-60642-7

Keywords

Navigation