Skip to main content
Log in

Relativistic mask method for electron momentum distributions after ionization of hydrogen-like ions in strong laser fields

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Wavefunction-splitting or mask method, widely used in the non-relativistic calculations of the photoelectron angular distributions, is extended to the relativistic domain within the dipole approximation. Since the closed-form expressions for the relativistic Volkov states are not available within the dipole approximation, we build such states numerically solving a single second-order differential equation. We calculate the photoelectron energy spectra and angular distributions for highly charged ions under different ionization regimes with both the direct and the relativistic mask methods. We show that the relativistic mask method works very well and reproduces the electron energy and angular distributions calculated by the direct method in the energy range where both methods can be used. On the other hand, the relativistic mask method can be applied for longer laser pulses and/or higher photoelectron energies where the direct method may have difficulties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000).

    Article  ADS  Google Scholar 

  2. P. Agostini, L.F. DiMauro, Rep. Progr. Phys. 67, 813 (2004).

    Article  ADS  Google Scholar 

  3. F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).

    Article  ADS  Google Scholar 

  4. A. Di Piazza, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Rev. Mod. Phys. 84, 1177 (2012).

    Article  ADS  Google Scholar 

  5. T. Tschentscher, R. Feidenhans’l, Synchrotron Radiat. News 30, 21 (2017).

    Article  Google Scholar 

  6. M. Dunne, B. Schoenlein, Synchrotron Radiat. News 30, 7 (2017).

    Article  Google Scholar 

  7. M. Vogel, W. Quint, G. Paulus, T. Stöhlker, Nucl. Instrum. Meth. Phys. Res. Sect. B 285, 65 (2012).

    Article  ADS  Google Scholar 

  8. S. Ringleb, M. Vogel, S. Kumar, W. Quint, G.G. Paulus, T. Stöhlker, Phys. Scr. T166, 014067 (2015).

    Article  ADS  Google Scholar 

  9. N. Stallkamp, S. Ringleb, B. Arndt, M. Kiffer, S. Kumar, T. Morgenroth, G. Paulus, W. Quint, T. Stöhlker, M. Vogel, X-Ray Spectrom. 49, 188 (2020).

    Article  ADS  Google Scholar 

  10. M. Klaiber, E. Yakaboylu, K.Z. Hatsagortsyan, Phys. Rev. A 87, 023417 (2013).

    Article  ADS  Google Scholar 

  11. H. Bauke, H.G. Hetzheim, G.R. Mocken, M. Ruf, C.H. Keitel, Phys. Rev. A 83, 063414 (2011).

    Article  ADS  Google Scholar 

  12. F. Fillion-Gourdeau, E. Lorin, A.D. Bandrauk, Comput. Phys. Commun. 183, 1403 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  13. Y.V. Vanne, A. Saenz, Phys. Rev. A 85, 033411 (2012).

    Article  ADS  Google Scholar 

  14. D.A. Telnov, K.E. Sosnova, E. Rozenbaum, S.I. Chu, Phys. Rev. A 87, 053406 (2013).

    Article  ADS  Google Scholar 

  15. E.B. Rozenbaum, D.A. Glazov, V.M. Shabaev, K.E. Sosnova, D.A. Telnov, Phys. Rev. A 89, 012514 (2014).

    Article  ADS  Google Scholar 

  16. I.A. Ivanov, Phys. Rev. A 91, 043410 (2015).

    Article  ADS  Google Scholar 

  17. T. Kjellsson, S. Selstø, E. Lindroth, Phys. Rev. A 95, 043403 (2017).

    Article  ADS  Google Scholar 

  18. I.V. Ivanova, V.M. Shabaev, D.A. Telnov, A. Saenz, Phys. Rev. A 98, 063402 (2018).

    Article  ADS  Google Scholar 

  19. T.K. Lindblom, M. Førre, E. Lindroth, S. Selstø, Phys. Rev. Lett. 121, 253202 (2018).

    Article  ADS  Google Scholar 

  20. P. Agostini, F. Fabre, G. Mainfray, G. Petite, N.K. Rahman, Phys. Rev. Lett. 42, 1127 (1979).

    Article  ADS  Google Scholar 

  21. P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).

    Article  ADS  Google Scholar 

  22. H.G. Muller, A. Tip, M.J. van der Wiel, J. Phys. B: At. Mol. Phys. 16, L679 (1983).

    Article  ADS  Google Scholar 

  23. P. Kruit, J. Kimman, H.G. Muller, M.J. van der Wiel, Phys. Rev. A 28, 248 (1983).

    Article  ADS  Google Scholar 

  24. R.R. Freeman, P.H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, M.E. Geusic, Phys. Rev. Lett. 59, 1092 (1987).

    Article  ADS  Google Scholar 

  25. R.M. Potvliege, S. Vučić, J. Phys. B: At. Mol. Phys. 42, 055603 (2009).

    Article  ADS  Google Scholar 

  26. C.I. Blaga, F. Catoire, P. Colosimo, G.G. Paulus, H.G. Muller, P. Agostini, L.F. DiMauro, Nat. Phys. 5, 335 (2009).

    Article  Google Scholar 

  27. C. Liu, K.Z. Hatsagortsyan, Phys. Rev. Lett. 105, 113003 (2010).

    Article  ADS  Google Scholar 

  28. D.A. Telnov, S.I. Chu, J. Phys. B 28, 2407 (1995).

    Article  ADS  Google Scholar 

  29. F. Lindner, M.G. Schätzel, H. Walther, A. Baltuška, E. Goulielmakis, F. Krausz, D.B. Milošević, D. Bauer, W. Becker, G.G. Paulus, Phys. Rev. Lett. 95, 040401 (2005).

    Article  ADS  Google Scholar 

  30. M. Wickenhauser, X.M. Tong, C.D. Lin, Phys. Rev. A 73, 011401(R) (2006).

    Article  ADS  Google Scholar 

  31. D.G. Arbó, E. Persson, J. Burgdörfer, Phys. Rev. A 74, 063407 (2006).

    Article  ADS  Google Scholar 

  32. D.G. Arbó, K.L. Ishikawa, K. Schiessl, E. Persson, J. Burgdörfer, Phys. Rev. A 81, 021403(R) (2010).

    Article  ADS  Google Scholar 

  33. D.G. Arbó, K.L. Ishikawa, K. Schiessl, E. Persson, J. Burgdörfer, Phys. Rev. A 82, 043426 (2010).

    Article  ADS  Google Scholar 

  34. D.A. Tumakov, D.A. Telnov, G. Plunien, V.M. Shabaev, Phys. Rev. A 100, 023407 (2019).

    Article  ADS  Google Scholar 

  35. K.J. Schafer, K.C. Kulander, Phys. Rev. A 42, 5794 (1990).

    Article  ADS  Google Scholar 

  36. S. Chelkowski, C. Foisy, A.D. Bandrauk, Phys. Rev. A 57, 1176 (1998).

    Article  ADS  Google Scholar 

  37. X.M. Tong, K. Hino, N. Toshima, Phys. Rev. A 74, 031405(R) (2006).

    Article  ADS  Google Scholar 

  38. U. De Giovannini, D. Varsano, M.A.L. Marques, H. Appel, E.K.U. Gross, A. Rubio, Phys. Rev. A 85, 062515 (2012).

    Article  ADS  Google Scholar 

  39. U. De Giovannini, A.H. Larsen, A. Rubio, Eur. Phys. J. B 88, 56 (2015).

    Article  ADS  Google Scholar 

  40. D.A. Telnov, S.I. Chu, Phys. Rev. A 79, 043421 (2009).

    Article  ADS  Google Scholar 

  41. D.A. Telnov, S.I. Chu, Phys. Rev. A 83, 063406 (2011).

    Article  ADS  Google Scholar 

  42. L. Tao, A. Scrinzi, New J. Phys. 14, 013021 (2012).

    Article  ADS  Google Scholar 

  43. Z. Zhou, S.I. Chu, Phys. Rev. A 83, 013405 (2011).

    Article  ADS  Google Scholar 

  44. Z. Zhou, S.I. Chu, Phys. Rev. A 87, 023407 (2013).

    Article  ADS  Google Scholar 

  45. H.R. Reiss, Phys. Rev. A 63, 013409 (2001).

    Article  ADS  Google Scholar 

  46. S. Palaniyappan, I. Ghebregziabher, A. DiChiara, J. MacDonald, B.C. Walker, Phys. Rev. A 74, 033403 (2006).

    Article  ADS  Google Scholar 

  47. H.R. Reiss, Phys. Rev. Lett. 101, 043002 (2008).

    Article  ADS  Google Scholar 

  48. A. Ludwig, J. Maurer, B.W. Mayer, C.R. Phillips, L. Gallmann, U. Keller, Phys. Rev. Lett. 113, 243001 (2014).

    Article  ADS  Google Scholar 

  49. M. Klaiber, K.Z. Hatsagortsyan, J. Wu, S.S. Luo, P. Grugan, B.C. Walker, Phys. Rev. Lett. 118, 093001 (2017).

    Article  ADS  Google Scholar 

  50. I. Angeli, K. Marinova, At. Data Nucl. Data Tables 99, 69 (2013).

    Article  ADS  Google Scholar 

  51. G. Yao, S.I. Chu, Chem. Phys. Lett. 204, 381 (1993).

    Article  ADS  Google Scholar 

  52. D.A. Telnov, S.I. Chu, Phys. Rev. A 59, 2864 (1999).

    Article  ADS  Google Scholar 

  53. V.F. Bratzev, G.B. Deyneka, I.I. Tupitsyn, Bull. Acad. Sci. USSR, Phys. Ser. 41, 173 (1977).

    Google Scholar 

  54. G.W.F. Drake, S.P. Goldman, Phys. Rev. A 23, 2093 (1981).

    Article  ADS  Google Scholar 

  55. X.M. Tong, S.I. Chu, Chem. Phys. 217, 119 (1997).

    Article  Google Scholar 

  56. D.A. Tumakov, D.A. Telnov, I.A. Maltsev, G. Plunien, V.M. Shabaev, Nucl. Instrum. Meth. Phys. Res. Sect. B 408, 276 (2017).

    Article  ADS  Google Scholar 

  57. D.A. Telnov, D.A. Krapivin, J. Heslar, S.I. Chu, J. Phys. Chem. A 122, 8026 (2018).

    Article  Google Scholar 

  58. J. Crank, P. Nicolson, Math. Proc. Cambridge Philos. Soc. 43, 50 (1947).

    Article  ADS  Google Scholar 

  59. M.E. Rose, Elementary Theory of Angular Momentum (Courier Corporation, 1995).

  60. J. Eichler, T. Stöhlker, Phys. Rep. 439, 1 (2007).

    Article  ADS  Google Scholar 

  61. V.A. Zaytsev, S. Tashenov, A.V. Maiorova, V.M. Shabaev, T. Stöhlker, J. Phys. B: At. Mol. Opt. Phys. 48, 165003 (2015).

    Article  ADS  Google Scholar 

  62. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, 1988).

  63. F. Salvat, J. Fernández-Varea, W. Williamson, Comput. Phys. Commun. 90, 151 (1995).

    Article  ADS  Google Scholar 

  64. D.M. Wolkow, Z. Angew. Phys. 94, 250 (1935).

    Google Scholar 

  65. B. Böning, W. Paufler, S. Fritzsche, Phys. Rev. A 99, 053404 (2019).

    Article  ADS  Google Scholar 

  66. E.S. Fradkin, D.M. Gitman, S.M. Shvartsman, Quantum Electrodynamics With Unstable Vacuum (Springer, Berlin, 1991).

  67. S.P. Gavrilov, D.M. Gitman, Phys. Rev. D 53, 7162 (1996).

    Article  ADS  Google Scholar 

  68. L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).

    Google Scholar 

  69. Z. Chen, T. Morishita, A.T. Le, M. Wickenhauser, X.M. Tong, C.D. Lin, Phys. Rev. A 74, 053405 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dmitry A. Tumakov or Dmitry A. Telnov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tumakov, D.A., Telnov, D.A., Plunien, G. et al. Relativistic mask method for electron momentum distributions after ionization of hydrogen-like ions in strong laser fields. Eur. Phys. J. D 74, 188 (2020). https://doi.org/10.1140/epjd/e2020-10311-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10311-5

Keywords

Navigation