Skip to main content
Log in

Chloridocobaltate(II) metal–organic cocrystal delivering intermolecular-charge transfer-enhanced passive optical limiting: A comprehensive study on structure–property relation

  • Regular Article – Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The structure–property relation of a novel metal–organic cocrystal piperazine-1,4-diium tetrachloridocobaltate(II) monohydrate (abbreviated as PCo) for third-order nonlinear optical applications is reported. The acid hydrolysis during pH optimization yielded anionic \([\hbox {CoCl}_4]^{2-}\) and cationic \((\hbox {C}_{4}\hbox {H}_{12}\hbox {N}_{2})^{2+}\) which together formed a stable chemical structure. The bulk single crystals were grown by slow solvent evaporation method with optimized solution pH of 3.5. Its response to the single-crystal X-ray diffraction confirmed PCo belongs to the monoclinic (\(P2_1/c\)) crystal system. Investigated thermal, mechanical, linear absorption and emission properties show the suitability of PCo for optoelectronic device applications. The calculated molecular interaction energy at B3LYP/6-31G(p,d) level reveals the possibility of noncovalent intermolecular charge transfer via \({\hbox {N}- \hbox {H}\cdots \hbox {Cl}}\), \({\hbox {N}-\hbox {H}\cdots \hbox {O}}\) and \({\hbox {O}-\hbox {H}\cdots \hbox {Cl}}\) types of interactions. Rich availability of polarizable electronegative interactions between radicals upon laser stimuli enhanced nonlinear optical property in PCo cocrystal. The magnitude of third-order nonlinear optical susceptibility (\(\chi ^{(3)}\)), nonlinear refractive index (\(n_2\)) and nonlinear absorption coefficient (\(\beta \)) of PCo cocrystal under continuous-wave laser excitation were found to be \((9.32\pm 0.01)\times 10^{-6}\) esu, \((1.22\pm 0.006)\times 10^{-8}\,\mathrm{cm}^2\mathrm{W}^{-1}\) and \((1.43\pm 0.001)\times 10^{-4}\,\mathrm{cmW}^{-1}\), respectively. The excited state-assisted sequential two-photon absorption responsible for optical limiting is demonstrated by measuring the \(\beta \) at different intensities of nanosecond pulsed laser excitations. Superior physicochemical properties with a low optical limiting threshold for both nanosecond pulsed and CW laser irradiance (\((1.44\pm 0.02)\times 10^{12} \hbox { Wm}^{-2}\) and \((0.365\pm 0.02)\times 10^{3} \hbox { Wcm}^{-2}\), respectively) promote the PCo cocrystal as a promising candidate for optical limiting application.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The crystallographic information file (CIF) of PCo cocrystal is deposited in Cambridge Crystallographic Data Centre (CCDC) with deposition number 1973196.]

References

  1. H. Xu, Y. Song, H. Hou, Inorganica Chim. Acta 357(12), 3541 (2004)

    Article  Google Scholar 

  2. H. Xu, Y. Song, L. Mi, H. Hou, M. Tang, Y. Sang, Y. Fan, Y. Pan, Dalton Trans. (6), 838 (2006)

  3. H. Hou, Y. Song, H. Xu, Y. Wei, Y. Fan, Y. Zhu, L. Li, C. Du, Macromolecules 36(4), 999 (2003)

    Article  ADS  Google Scholar 

  4. H. Ma, B. Chen, T. Sassa, L.R. Dalton, A.K.Y. Jen, J. Am. Chem. Soc. 123(5), 986 (2001)

    Article  Google Scholar 

  5. W. Lin, Z. Wang, L. Ma, J. Am. Chem. Soc. 121(48), 11249 (1999)

    Article  Google Scholar 

  6. L.W. Tutt, T.F. Boggess, IEEE J. Quantum Electron. 17(4), 299 (1993)

    ADS  Google Scholar 

  7. L. Vivien, P. Lancon, D. Riehl, F. Hache, E. Anglaret, Carbon 40(10), 1789 (2002)

    Article  Google Scholar 

  8. M.L. Tong, J.W. Cai, X.L. Yu, X.M. Chen, S.W. Ng, T.C. Mak, Aust. J. Chem. 51(7), 637 (1998)

    Article  Google Scholar 

  9. M.C. Suen, T.C. Keng, J.C. Wang, Polyhedron 21(27–28), 2705 (2002)

    Article  Google Scholar 

  10. P. Losier, M.J. Zaworotko, Angew. Chem. 35(23–24), 2779 (1996)

    Article  Google Scholar 

  11. J. Lu, C. Yu, T. Niu, T. Paliwala, G. Crisci, F. Somosa, A.J. Jacobson, Inorg. Chem. 37(18), 4637 (1998)

    Article  Google Scholar 

  12. J. Lu, T. Paliwala, S.C. Lim, C. Yu, T. Niu, A.J. Jacobson, Inorg. Chem. 36(5), 923 (1997)

    Article  Google Scholar 

  13. C. Jiang, Z.Y. Wang, Polyhedron 22(21), 2953 (2003)

    Article  Google Scholar 

  14. F. Lloret, G. De Munno, M. Julve, J. Cano, R. Ruiz, A. Caneschi, Angew. Chem. 37(1–2), 135 (1998)

    Article  Google Scholar 

  15. G.M. Williams, J. Olmstead, A.P. Breksa, J. Chem. Educ. 66(12), 1043 (1989)

    Article  Google Scholar 

  16. A.G. Blackman, Cobalt: Inorganic and Coordination Chemistry. Encyclopedia of Inorganic Chemistry, vol. 967 (2006)

  17. M.O. Senge, M. Fazekas, E.G. Notaras, W.J. Blau, M. Zawadzka, O.B. Locos, E.M. Ni Mhuircheartaigh, Adv. Mater. 19(19), 2737 (2007)

    Article  Google Scholar 

  18. J. Gao, M. He, Z.Y. Lee, W. Cao, W.W. Xiong, Y. Li, R. Ganguly, T. Wu, Q. Zhang, Dalton Trans. 42(32), 11367 (2013)

    Article  Google Scholar 

  19. C. Li, K. Wang, J. Li, Q. Zhang, A.C.S. Mater. Lett. 2(7), 779 (2020)

    Google Scholar 

  20. X.L. Wang, H.Y. Lin, B. Mu, A.X. Tian, G.C. Liu, N.H. Hu, CrystEngComm 13(6), 1990 (2011)

    Article  Google Scholar 

  21. Y. Niu, H. Hou, Y. Wei, Y. Fan, Y. Zhu, C. Du, X. Xin, Inorg. Chem. Commun. 4(7), 358 (2001)

    Article  Google Scholar 

  22. J. Ratilainen, K. Airola, R. Fröhlich, M. Nieger, K. Rissanen, Polyhedron 18(17), 2265 (1999)

    Article  Google Scholar 

  23. D. Tran Qui, E. Palacios, Acta Crystallogr. C 46(7), 1212 (1990)

    Article  Google Scholar 

  24. C. Decaroli, A. Arevalo-Lopez, C. Woodall, E. Rodriguez, J. Attfield, S. Parker, C. Stock, Acta Crystallogr. B 71(1), 20 (2015)

    Article  Google Scholar 

  25. P. Era, R.M. Jauhar, V. Viswanathan, G. Vinitha, P. Murugakoothan, J. Mol. Struct. 1204, 127476 (2020)

    Article  Google Scholar 

  26. O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A. Howard, H. Puschmann, J. Appl. Crystallogr. 42(2), 339 (2009)

    Article  Google Scholar 

  27. G.M. Sheldrick, Acta Crystallogr. A 64(1), 112 (2008)

    Article  ADS  Google Scholar 

  28. G.M. Sheldrick, Acta Crystallogr. C 71(1), 3 (2015)

    Article  Google Scholar 

  29. L.J. Farrugia, J. Appl. Crystallogr. 45(4), 849 (2012)

    Article  Google Scholar 

  30. M. Nardelli, J. Appl. Crystallogr. 28(5), 659 (1995)

    Article  Google Scholar 

  31. C.F. Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. Streek, P.A. Wood, J. Appl. Crystallogr. 41(2), 466 (2008)

    Article  Google Scholar 

  32. M.D. Guiver, G.P. Robertson, S. Foley, Macromolecules 28(23), 7612 (1995)

    Article  ADS  Google Scholar 

  33. S. Wolff, D. Grimwood, J. McKinnon, M. Turner, D. Jayatilaka, M. Spackman. CrystalExplorer 17, University of Western Australia (2017). http://hirshfeldsurface.net

  34. R. Soman, S. Sujatha, C. Arunkumar, J. Fluor. Chem. 163, 16 (2014)

    Article  Google Scholar 

  35. M.A. Spackman, D. Jayatilaka, CrystEngComm 11(1), 19 (2009)

    Article  Google Scholar 

  36. M.A. Spackman, Cryst. Growth Des. 15(11), 5624 (2015)

    Article  Google Scholar 

  37. T.A. Hegde, A. Dutta, G. Vinitha, Appl. Phys. A 124(12), 808 (2018)

    Article  ADS  Google Scholar 

  38. K. Sangwal, Mater. Chem. Phys. 63(2), 145 (2000)

    Article  Google Scholar 

  39. E. Onitsch, Mikroskopie 95(15), 12 (1956)

    Google Scholar 

  40. B.R. Puri, L.R. Sharma, K.C. Kalia, Principles of Inorganic Chemistry, 33rd edn., vol. 773 (2020)

  41. S. Yuvaraj, N. Manikandan, G. Vinitha, Opt. Mater. 73, 428 (2017)

    Article  ADS  Google Scholar 

  42. G. Wyszecki, JOSA 44(10), 787 (1954)

    Article  ADS  MathSciNet  Google Scholar 

  43. R.G. Kuehni, JOSA 66(5), 497 (1976)

    Article  ADS  Google Scholar 

  44. T.A. Hegde, A. Dutta, T.S. Girisun, M. Abith, G. Vinitha, J. Mater. Sci.: Mater. Electron 30(20), 18885 (2019)

    Google Scholar 

  45. T.A. Hegde, A. Dutta, T.S. Girisun, G. Vinitha, Opt. Mater. 117, 111194 (2021)

    Article  Google Scholar 

  46. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26(4), 760 (1990)

  47. T.A. Hegde, A. Dutta, V. Gandhiraj, Int. J. Eng. Technol. Innov. 9(4), 257 (2019)

    Google Scholar 

  48. C. Babeela, N.S. Narendran, M. Pannipara, A.G. Al-Sehemi, T.S. Girisun, Mater. Chem. Phys 237, 121827 (2019)

    Article  Google Scholar 

  49. T.S. Girisun, R.M. Somayaji, N. Priyadarshani, S.V. Rao, Mater. Res. Bull. 87, 102 (2017)

    Article  Google Scholar 

  50. R. Paschotta, Encyclopedia of Laser Physics and Technology, vol. 1 (Wiley, New York, 2008)

    Google Scholar 

Download references

Acknowledgements

This work was supported by DAE-BRNS, Government of India [34/14/55/2014-BRNS/2014]. Authors thank Dr T.C. Sabari Girisun, Nanophotonics Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli-620 024, India, for lending us the nanosecond pulsed laser-equipped Z-scan facility for the present study.

Author information

Authors and Affiliations

Authors

Contributions

Tejaswi Ashok Hegde contributed to conceptualization; methodology; data curation; investigation; software; formal analysis; validation; writing—original draft, review and editing. G. Vinitha contributed to writing—review and editing; supervision; project administration; funding acquisition.

Corresponding author

Correspondence to G. Vinitha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 504 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegde, T.A., Vinitha, G. Chloridocobaltate(II) metal–organic cocrystal delivering intermolecular-charge transfer-enhanced passive optical limiting: A comprehensive study on structure–property relation. Eur. Phys. J. D 75, 214 (2021). https://doi.org/10.1140/epjd/s10053-021-00227-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00227-z

Navigation