Skip to main content
Log in

Measurement of membrane elasticity by micro-pipette aspiration

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The classical micro-pipette aspiration technique, applied for measuring the membrane bending elasticity, is in the present work reviewed and extended to span the range of pipette aspiration pressures going through the flaccid (low pressures) to tense (high pressures) membrane regime. The quality of the conventional methods for analysing data is evaluated using numerically generated data and a new method for data analysis, based on thermodynamic analysis and detailed statistical mechanical modelling, is introduced. The analysis of the classical method, where the membrane bending modulus is obtained from micro-pipette aspiration data acquired in the low-pressure regime, reveals a significant correction from membrane stretching elasticity. The new description, which includes the full vesicle geometry and both the membrane bending and stretching elasticity, is used for the interpretation of micro-pipette aspiration experiments conducted on SOPC (stearoyl-oleoyl-phosphatidyl-choline) lipid vesicles in the fluid phase. The data analysis, which is extended by detailed image analysis and a fitting procedure based on Monte Carlo integration, gives an estimate of the bending modulus, that agrees with previously published results obtained by the use of shape fluctuation analysis of giant unilamellar vesicles. The obtained estimate of the area expansion modulus, is automatically corrected for contributions from residual thermal undulations and the equilibrium area of the vesicle is resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Canham, J. Theor. Biol. 26, 21 (1970).

    Google Scholar 

  2. W. Helfrich, Z. Naturforsch. C 28, 693 (1973).

    Google Scholar 

  3. E. Evans, Biophys. J. 14, 923 (1974).

    Google Scholar 

  4. F. Brochard, J.F. Lennon, J. Phys. (Paris) 36, 1035 (1975).

    Google Scholar 

  5. F. Brochard, P.G. de Gennes, P. Pfeuty, J. Phys. (Paris) 37, 73 (1976).

    Google Scholar 

  6. R.M. Servuss, W. Harbech, W. Helfrich, Biochim. Biophys. Acta 436, 900 (1976).

    Article  Google Scholar 

  7. H. Engelhardt, H.P. Duwe, E. Sackmann, J. Phys. (Paris) 46, L395 (1985).

  8. J.F. Faucon, M.D. Mitov, P. Méléard, I. Bivas, P. Bothorel, J. Phys. (Paris) 50, 2389 (1989).

    Google Scholar 

  9. J.R. Henriksen, J.H. Ipsen, Eur. Phys. J. E 9, 365 (2002).

    Article  Google Scholar 

  10. E. Evans, W. Rawicz, Phys. Rev. Lett. 64, 2094 (1990).

    Article  Google Scholar 

  11. E. Evans, W. Rawicz, Phys. Rev. E 79, 2379 (1997).

    Article  Google Scholar 

  12. W. Rawicz, K.C. Olbrich, T. McIntosh, D. Needham, E. Evans, Biophys. J. 79, 328 (2000).

    Google Scholar 

  13. P. Meleard, C. Gerbeaud, P. Bardusco, N. Jeandaine, M.D. Mitov, L. Fernandez-Puente, Biochimie 80, 401 (1998).

    Article  Google Scholar 

  14. L.V. Hung, D.E. Block, M.L. Longo, Langmuir 18, 8988 (2002).

    Article  Google Scholar 

  15. U. Seifert, Adv. Phys. 46, 13 (1997).

    Google Scholar 

  16. F. David, S. Leibler, J. Phys. II 1, 959 (1991).

    Article  Google Scholar 

  17. H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd ed. (John Wiley and Sons).

  18. J. Lemmich, K. Mortensen, J.H. Ipsen, T. Hønger, R. Bauer, K. Jørgensen, O. Mouritsen, Mod. Phys. Lett. B 8, 1803 (1994).

    Google Scholar 

  19. J.-B. Fournier, A. Ajdari, L. Peliti, Phys. Rev. Lett. 86, 4970 (2001).

    Article  Google Scholar 

  20. D. Marsh, Biophys. J. 73, 865 (1997).

    Google Scholar 

  21. R. Lipowsky, in Structure and Dynamics of Membranes, Vol. 1B, edited by R. Lipowsky, E. Sackmann (Elsevier, 1995).

  22. E. Evans, R. Skalak, Mechanics and Thermodynamics of Biomembranes (CRS Press Inc., 1980).

  23. W. Helfrich, R.-M. Servuss, Nuovo Cimento D 3, 137 (1984).

    Google Scholar 

  24. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.N. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953).

    Google Scholar 

  25. M.I. Angelova, S. Soleau, P. Méléard, P. Bothorel, Prog. Colloid. Polym. Sci. 89, 127 (1992).

    Google Scholar 

  26. J.H. Schulman, J.B. Montage, Ann. N.Y. Acad. Sci. 92, 366 (1961).

    Google Scholar 

  27. O. Zhong-can, W. Helfrich, Phys. Rev. A 39, 5280 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Henriksen.

Additional information

Received: 24 March 2004, Published online: 15 July 2004

PACS:

68.37.-d Microscopy of surfaces, interfaces, and thin films - 87.16.Dg Membranes, bilayers, and vesicles - 05.70.Np Interface and surface thermodynamics

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henriksen, J.R., Ipsen, J.H. Measurement of membrane elasticity by micro-pipette aspiration. Eur. Phys. J. E 14, 149–167 (2004). https://doi.org/10.1140/epje/i2003-10146-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2003-10146-y

Keywords

Navigation