Skip to main content
Log in

Annihilation of nematic point defects: Pre-collision and post-collision evolution

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The annihilation of the nematic hedgehog and anti-hedgehog within an infinite cylinder of radius R is studied. The semi-microscopic lattice-type model and Brownian molecular dynamics are used. We distinguish among the i) early pre-collision, ii) late pre-collision, iii) early post-collision, and iv) late post-collision stages. In the pre-collision stage our results agree qualitatively with the existing experimental observations and also continuum-type simulations. The core of each defect exhibits a ring-like structure, where the ring axis is set perpendicular to the cylinder symmetry axis. For ξ(0)d/(2R) > 1 the interaction between defects is negligible, where ξ(0)d describes the initial separation of defects. Consequently, the defects annihilate within the simulation time window for ξ(0)d/(2R) < 1. For close enough defects their separation scales as ξd \( \varpropto\) (tc - t)0.4±0.1, where tc stands for the collision time. In elastically anisotropic medium the hedgehog is faster than the anti-hedgehog. In the early pre-collision stage the defects can be treated as point-like particles, possessing inherent core structure, that interact via the nematic director field. In the late pre-collision stage the cores reflect the interaction between defects. After the collision a charge-less ring structure is first formed. In the early post-collision stage the ring adopts an essentially untwisted circular structure of the radius ξr. In the late post-collision stage we observe two qualitatively different scenarios. For μ = ξr/R < μc ∼ 0.25 the ring collapses leading to the escaped radial equilibrium structure. For μ > μc the chargeless ring triggers the nucleation growth into the planar polar structure with line defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Mermin, Rev. Mod. Phys. 51, 591 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  2. T.W.B. Kibble, J. Phys. A 9, 1387 (1976).

    Article  MATH  ADS  Google Scholar 

  3. M.V. Kurik, O.D. Lavrentovich, Usp. Fiz. Nauk 154, 381 (1988), (Sov. Phys. Usp. 31, 196 (1988)).

    MathSciNet  Google Scholar 

  4. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1993).

  5. H. Trebin, Liq. Cryst. 24, 127 (1998).

    Article  Google Scholar 

  6. M. Kleman, Points, Lines and Walls: in Liquid Crystals, Magnetic Systems and Various Disordered Media (Wiley, New York, 1983).

  7. N. Schopohl, T.J. Sluckin, J. Phys. (Paris) 49, 1097 (1988).

    Google Scholar 

  8. S. Kralj, S. Žumer, D.W. Allender, Phys. Rev. A 43, 2943 (1991).

    Article  ADS  Google Scholar 

  9. N. Schopohl, T.J. Sluckin, Phys. Rev. Lett. 59, 2582 (1987).

    Article  ADS  Google Scholar 

  10. E. Penzenstadler, H.R. Trebin, J. Phys. (Paris) 50, 1025 (1989).

    Google Scholar 

  11. S. Kralj, E.G. Virga, S. Žumer, Phys. Rev. E 60, 1858 (1999).

    Article  ADS  Google Scholar 

  12. R. Rosso, E.G. Virga, J. Phys. A 29, 4247 (1996).

    Article  MATH  ADS  Google Scholar 

  13. E.C. Gartland, S. Mkaddem, Phys. Rev. E 59, 563 (1999).

    Article  ADS  Google Scholar 

  14. M. Terentjev, Phys. Rev. E. 51, 1330 (1995).

    Article  ADS  Google Scholar 

  15. S. Kralj, E.G. Virga, J. Phys. A 34, 829 (2001).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. A. Pargellis, N. Turok, B. Yurke, Phys. Rev. Lett. 67, 1570 (1991).

    Article  ADS  Google Scholar 

  17. I. Chuang, B. Yourke, N. Pargellis, N. Turok, Phys. Rev. E 47, 3343 (1993).

    Article  ADS  Google Scholar 

  18. J.L. Billeter, A.M. Smondyrev, G.B. Loriot, R.A. Pelcovits, Phys. Rev. E 60, 6831 (1999).

    Article  ADS  Google Scholar 

  19. L.M. Pismen, B.Y. Rubinstein, Phys. Rev. Lett. 69, 96 (1992).

    Article  ADS  Google Scholar 

  20. G.G. Peroli, E.G. Virga, Phys. Rev. E 54, 5235 (1996).

    Article  ADS  Google Scholar 

  21. P.E. Cladis, H.R. Brand, Physica A 326, 322 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. G. Toth, C. Denniston, J.M. Yeomans, Phys. Rev. Lett. 88, 105504 (2002).

    Article  ADS  Google Scholar 

  23. A. Bogi, P.M. Lagarde, I. Dozov, M. Nobili, Phys. Rev. Lett. 89, 225501 (2002).

    Article  ADS  Google Scholar 

  24. D. Svenšek, S. Žumer, Phys. Rev. E 66, 021712 (2002).

    Article  ADS  Google Scholar 

  25. K. Minoura, Y. Kimura, K. Ito, R. Hayakawa, T. Miura, Phys. Rev. E 58, 643 (1998).

    Article  ADS  Google Scholar 

  26. J. Bajc, G.G. Peroli, E.G. Virga, S. Žumer, Liq. Cryst. 29, 213 (2002).

    Article  Google Scholar 

  27. Z. Bradač, S. Kralj, M. Svetec, S. Žumer, Phys. Rev. E 67, 050702(R) (2003).

    Article  ADS  Google Scholar 

  28. M. Svetec, Z. Bradač, S. Kralj, S. Žumer, Mol. Cryst. Liq. Cryst. 413, 43 (2004).

    Article  Google Scholar 

  29. E. Berggren, C. Zannoni, C. Chiccoli, P. Pasini, F. Semeria, Phys. Rev. E 50, 2929 (1994).

    Article  ADS  Google Scholar 

  30. G. Barbero, L.R. Evangelista, An Elementary Course on the Continuum Theory for Nematic Liquid Crystals (World Scientific Publishing, Singapore, 2001).

  31. P.A. Lebwohl, G. Lasher, Phys. Rev. A 6, 426 (1972).

    Article  ADS  Google Scholar 

  32. G. Skacej, V.M. Pergamenshchik, A.L. Alexe-Ionescu, G. Barbero, S. Žumer, Phys. Rev. E 56, 571 (1997).

    Article  ADS  Google Scholar 

  33. Z. Bradač, S. Kralj, S. Žumer, Phys. Rev. E 65, 021705 (2002).

    Article  ADS  Google Scholar 

  34. D.L. Ermak, J. Chem. Phys. 62, 4189 (1975).

    Article  ADS  Google Scholar 

  35. Z. Bradač, S. Kralj, S. Žumer, Phys. Rev. E 58, 7447 (1998).

    Article  ADS  Google Scholar 

  36. T.C. Lubensky, D. Pettey, N. Currier, H. Stark, Phys. Rev. E 57, 610 (1998).

    Article  ADS  Google Scholar 

  37. G.P. Crawford, M. Vilfan, I. Vilfan, J.W. Doane, Phys. Rev. A 43, 835 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Svetec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svetec, M., Kralj, S., Bradač, Z. et al. Annihilation of nematic point defects: Pre-collision and post-collision evolution. Eur. Phys. J. E 20, 71–79 (2006). https://doi.org/10.1140/epje/i2005-10120-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2005-10120-9

PACS.

Navigation