Skip to main content
Log in

Dielectric and conductivity relaxation in mixtures of glycerol with LiCl

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We report a thorough dielectric characterization of the α relaxation of glass-forming glycerol with varying additions of LiCl. Nine salt concentrations from 0.1 to 20mol% are investigated in a frequency range of 20Hz-3GHz and analyzed in the dielectric loss and modulus representation. Information on the dc conductivity, the dielectric relaxation time (from the loss) and the conductivity relaxation time (from the modulus) is provided. Overall, with increasing ion concentration, a transition from reorientationally to translationally dominated behavior is observed and the translational ion dynamics and the dipolar reorientational dynamics become successively coupled. This gives rise to the prospect that, by adding ions to dipolar glass formers, dielectric spectroscopy may directly couple to the translational degrees of freedom determining the glass transition, even in frequency regimes where usually strong decoupling is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Anderson, Science 267, 1615 (1995).

  2. For some recent reviews on the physics of glass-forming materials, see: M.D. Ediger, C.A. Angell, S.R. Nagel, J. Phys. Chem. 100, 13200 (1996)

    Google Scholar 

  3. P. Lunkenheimer, U. Schneider, R. Brand, A. Loidl, Contemp. Phys. 41, 15 (2000).

    Google Scholar 

  4. P. Lunkenheimer, A. Loidl, Chem. Phys. 284, 205 (2002).

    Google Scholar 

  5. M.A. Ramos, S. Vieira, F.J. Bermejo, J. Dawidowski, H.E. Fischer, H. Schober, M.A. González, C.K. Loong, D.L. Price, Phys. Rev. Lett. 78, 82 (1997).

    Google Scholar 

  6. M.A. Miller, M. Jimenez-Ruiz, F.J. Bermejo, N.O. Birge, Phys. Rev. B 57, 13977 (1998).

    Google Scholar 

  7. P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972).

    Google Scholar 

  8. See, e.g., R.H. Cole, E. Tombari, J. Non-Cryst. Solids 131-133, 969 (1991)

  9. A. Pimenov, P. Lunkenheimer, H. Rall, R. Kohlhaas, A. Loidl, R. Böhmer, Phys. Rev. E 54, 676 (1996).

    Google Scholar 

  10. A. Rivera, A. Brodin, A. Pugachev, E.A. Rössler, J. Chem. Phys. 126, 114503 (2007).

    Google Scholar 

  11. W. Götze, L. Sjögren, Rep. Progr. Phys. 55, 241 (1992).

    Google Scholar 

  12. P. Lunkenheimer, A. Pimenov, M. Dressel, Yu.G. Goncharov, R. Böhmer, A. Loidl, Phys. Rev. Lett. 77, 318 (1996)

    Google Scholar 

  13. P. Lunkenheimer, A. Pimenov, A. Loidl, Phys. Rev. Lett. 78, 2995 (1997).

    Google Scholar 

  14. U. Schneider, P. Lunkenheimer, R. Brand, A. Loidl, J. Non-Cryst. Solids 235-237, 173 (1998).

    Google Scholar 

  15. P. Lunkenheimer, A. Pimenov, M. Dressel, B. Gorshunov, U. Schneider, B. Schiener, R. Böhmer, A. Loidl, Mat. Res. Soc. Symp. Proc. 455, 47 (1997)

    Google Scholar 

  16. L.C. Pardo, P. Lunkenheimer, A. Loidl, Phys. Rev. E 76, 030502(R) (2007)

  17. A. Brodin, R. Bergman, J. Mattson, E.A. Rössler, Eur. Phys. J. B 36, 349 (2003).

    Google Scholar 

  18. G.P. Johari, M. Goldstein, J. Chem. Phys. 53, 2372 (1970).

    Google Scholar 

  19. R. Schilling, T. Scheidsteger, Phys. Rev. E 56, 2932 (1997)

    Google Scholar 

  20. P. Lunkenheimer, A. Pimenov, M. Dressel, B. Schiener, U. Schneider, A. Loidl, Progr. Theor. Phys. Suppl. 126, 123 (1997).

    Google Scholar 

  21. F.J. Bartoli, J.N. Birch, Nguyen-Huu-Toan, G.E. McDuffie, J. Chem. Phys. 49, 1916 (1968).

  22. C.T. Moynihan, N. Balitactac, L. Boone, T.A. Litovitz, J. Chem. Phys. 55, 3013 (1971)

    Google Scholar 

  23. F.S. Howell, C.T. Moynihan, P.B. Macedo, Bull. Chem. Soc. Jpn. 57, 652 (1984).

    Google Scholar 

  24. G.P. Johari, K. Pathmanathan, Phys. Chem. Glasses 29, 219 (1988).

    Google Scholar 

  25. M.A. Floriano, C.A. Angell, J. Chem. Phys. 91, 2537 (1989).

    Google Scholar 

  26. K. Pathmanathan, G.P. Johari, J. Chem. Phys. 95, 5990 (1991).

    Google Scholar 

  27. A. Hammadi, D. Champeney, J. Solution Chem. 28, 21 (1999).

    Google Scholar 

  28. U. Schneider, Breitbandige dielektrische Studien der Dynamik struktureller Glasbildner (Libri Books on Demand, Norderstedt, 2000).

  29. N.O. Birge, Phys. Rev. B 34, 1631 (1986)

    Google Scholar 

  30. However, some deviations of relaxation times from different methods were reported in: U. Buchenau, M. Ohl, A. Wischnewski, J. Chem. Phys. 124, 094505 (2006).

    Google Scholar 

  31. M. Köhler, P. Lunkenheimer, L.C. Pardo, J. Wuttke, A. Loidl, to be published.

  32. R. Böhmer, M. Maglione, P. Lunkenheimer, A. Loidl, J. Appl. Phys. 65, 901 (1989).

    Google Scholar 

  33. U. Schneider, P. Lunkenheimer, A. Pimenov, R. Brand, A. Loidl, Ferroelectrics 249, 89 (2001).

  34. D.W. Davidson, R.H. Cole, J. Chem. Phys. 18, 1417 (1950)

    Google Scholar 

  35. S. Havriliak, S. Negami, J. Polym. Sci. C 14, 99 (1966).

    Google Scholar 

  36. H. Vogel, Phys. Z. 22, 645 (1921)

    Google Scholar 

  37. P. Lunkenheimer, A. Loidl, Chem. Phys. 284, 205 (2002).

    Google Scholar 

  38. R. Richert, H. Wagner, J. Phys. Chem. 99, 10948 (1995).

    Google Scholar 

  39. J.R. Macdonald, Impedance Spectroscopy (Wiley & Sons, New York, 1987).

  40. A. Hammadi, Int. J. Thermophys. 25, 89 (2004).

    Google Scholar 

  41. P. Debye, E. Hückel, Phys. Z. 24, 185 (1923).

    Google Scholar 

  42. P. Debye, E. Hückel, Phys. Z. 24, 305 (1923).

    Google Scholar 

  43. L. Onsager, Phys. Z. 27, 388 (1926).

  44. L. Onsager, Phys. Z. 28, 277 (1927).

  45. C.A. Angell, Solid State Ionics 9&10, 3 (1983).

  46. W. Xu, A.J. Shusterman, M. Videa, V. Velikov, R. Marzke, C.A. Angell, J. Electrochem. Soc. 150, E74 (2003)

  47. C.A. Angell, in Relaxations in Complex Systems, edited by K.L. Ngai, G.B. Wright (NRL, Washington, D.C., 1985), p. 3.

  48. F.E. Harris, C.T. O’Konski, J. Phys. Chem. 61, 310 (1957).

    Google Scholar 

  49. K. Nörtemann, J. Hilland, U. Kaatze, J. Phys. Chem. A 101, 6864 (1997).

    Google Scholar 

  50. R. Gulich, M. Köhler, P. Lunkenheimer, A. Loidl, unpublished.

  51. R. Böhmer, J. Non-Cryst. Solids 172-174, 628 (1994).

  52. N.B. Olsen, T. Christensen, J.C. Dyre, Phys. Rev. Lett. 86, 1271 (2001).

    Google Scholar 

  53. H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lunkenheimer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köhler, M., Lunkenheimer, P. & Loidl, A. Dielectric and conductivity relaxation in mixtures of glycerol with LiCl. Eur. Phys. J. E 27, 115–122 (2008). https://doi.org/10.1140/epje/i2008-10357-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2008-10357-8

PACS.

Navigation