Skip to main content
Log in

The role of the amorphous phase in the re-crystallization process of cold-crystallized poly(ethylene terephthalate)

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The process of re-crystallization in poly(ethylene terephthalate) is studied by means of X-ray diffraction (SAXS and WAXS) and dynamical mechanical thermal analysis. Samples cold-crystallized for 9h at the temperatures T c = 100 fcir#circ;C and T c = 160 fcir#circ;C, i.e. in the middle of the \( \alpha\) relaxation region and close to its upper bound, respectively, are analyzed. During heating from room temperature, a structural rearrangement of the stacks is always found at T rT c + 20 fcir#circ;C. This process is characterized by a decrease of the linear crystallinity, irrespective of Tc; on the other hand, the WAXS crystallinity never increases with T below Tc+30fcir#circ;C. The lamellar thickness in the low-Tc sample decreases significantly after the structural transition, whereas in the high-Tc sample the lamellar thickness remains almost unchanged. In both, high- and low-Tc, the interlamellar thickness increases above Tr. Moreover, the high-Tc sample shows a lower rate of decrease of the mechanical performance with increasing T as the threshold Tr is crossed. This result is interpreted in terms of the formation of rigid amorphous domains where the chains are partially oriented. The presence of these domains would determine i) the stabilization of the crystalline lamellae from the thermodynamic point of view and ii) the increase of the elastic modulus of the amorphous interlamellar regions. This idea is discussed by resorting to a phase diagram. An estimation of the chemical-potential increase of the interlamellar amorphous regions, due to the enhancement of the structural constraints hindering segmental mobility, is offered. Finally, previous calculations developed within the framework of the Gaussian chain model (F.J. Baltá Calleja et al., Phys. Rev. B 75, 224201 (2007)) are used here to estimate the degree of chain orientation induced by the structural transition of the stacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1998).

  2. F.J. Baltá Calleja, A. Flores, G. Di Marco, M. Pieruccini, Phys. Rev. B 75, 224201 (2007).

  3. M. Pieruccini, T.A. Ezquerra, M. Lanza, J. Chem. Phys. 127, 104903 (2007).

    Google Scholar 

  4. G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965).

    Google Scholar 

  5. A. Flores, M. Pieruccini, U. Nöchel, N. Stribeck, F.J. Baltá Calleja, Polymer 49, 965 (2008).

  6. R.K. Verma, B.S. Hsiao, Trends Polym. Sci. 4, 312 (1996).

    Google Scholar 

  7. A.A. Minakov, D.A. Mordvintsev, C. Schick, Polymer 45, 3755 (2004).

  8. B. Wunderlich, Progr. Polym. Sci. 28, 383 (2003).

    Google Scholar 

  9. R. Androsch, B. Wunderlich, Polymer 46, 12556 (2005).

  10. W. Ruland, Colloid Polym. Sci. 255, 417 (1977).

  11. N. Stribeck, Colloid Polym. Sci. 280, 254 (2002).

  12. J.J. Hermans, Rec. Trav. Chim. Pais-Bas 63, 211 (1944).

    Google Scholar 

  13. N. Stribeck, X-ray Scattering of Soft Matter (Springer, Heidelberg 2007) p. 179.

  14. G.C. Alfonso, E. Pedemonte, L. Ponzetti, Polymer 20, 104 (1979).

    Google Scholar 

  15. A. Bartolotta, G. Di Marco, F. Farsaci, M. Lanza, M. Pieruccini, Polymer 44, 5771 (2003).

  16. G. Strobl, Prog. Polym. Sci. 31, 398 (2006).

    Google Scholar 

  17. G. Strobl, T.Y. Cho, Eur. Phys. J. E 23, 55 (2007).

    Google Scholar 

  18. M. Pieruccini, G. Di Marco, M. Lanza, J. Appl. Phys. 80, 1851 (1996).

    Google Scholar 

  19. T. Albrecht, G. Strobl, Macromolecules 28, 5827 (1995).

  20. J. Brandrup, E.H. Immergut, E.A. Grulke (Editors), Polymer Handbook, 4th edition (Wiley, New York, 1999).

  21. M. Imai, K. Kaji, T. Kanaya, Y. Sakai, Physica B 213, 214, 718 (1995).

    Google Scholar 

  22. C. Schick, E. Donth, Phys. Scr. 43, 423 (1991).

    Google Scholar 

  23. T.Y. Cho, B. Heck, G. Strobl, Chin. J. Polym. Sci. 25, 83 (2007).

    Google Scholar 

  24. V.B.F. Mathot, Thermal characterization of states of matter, in Calorimetry and Thermal Analysis of Polymers, edited by V.B.F. Mathot (Hanser, Munich, 1994) p. 105.

  25. M. Kattan, E. Dargent, J. Grenet, Polymer 43, 1399 (2002).

    Google Scholar 

  26. C. Schick, A. Wurm, A. Mohamed, Colloid Polym. Sci. 279, 800 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pieruccini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pieruccini, M., Flores, A., Nöchel, U. et al. The role of the amorphous phase in the re-crystallization process of cold-crystallized poly(ethylene terephthalate). Eur. Phys. J. E 27, 365–373 (2008). https://doi.org/10.1140/epje/i2008-10389-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2008-10389-0

PACS

Navigation