Skip to main content
Log in

Elastic contact mechanics: Percolation of the contact area and fluid squeeze-out

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The dynamics of fluid flow at the interface between elastic solids with rough surfaces depends sensitively on the area of real contact, in particular close to the percolation threshold, where an irregular network of narrow flow channels prevails. In this paper, numerical simulation and experimental results for the contact between elastic solids with isotropic and anisotropic surface roughness are compared with the predictions of a theory based on the Persson contact mechanics theory and the Bruggeman effective medium theory. The theory predictions are in good agreement with the experimental and numerical simulation results and the (small) deviation can be understood as a finite-size effect. The fluid squeeze-out at the interface between elastic solids with randomly rough surfaces is studied. We present results for such high contact pressures that the area of real contact percolates, giving rise to sealed-off domains with pressurized fluid at the interface. The theoretical predictions are compared to experimental data for a simple model system (a rubber block squeezed against a flat glass plate), and for prefilled syringes, where the rubber plunger stopper is lubricated by a high-viscosity silicon oil to ensure functionality of the delivery device. For the latter system we compare the breakloose (or static) friction, as a function of the time of stationary contact, to the theory prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Patir, H.S. Cheng, J. Tribol., Trans. ASME 100, 12 (1978).

    Google Scholar 

  2. N. Patir, H.S. Cheng, J. Tribol., Trans. ASME 101, 220 (1979).

    Google Scholar 

  3. J.A. Greenwood, J.B.P. Williamson, Proc. R. Soc. London, Ser. A 295, 300 (1966).

    Article  ADS  Google Scholar 

  4. A.W. Bush, R.D. Gibson, T.R. Thomas, Wear 35, 87 (1975).

    Article  Google Scholar 

  5. B.N.J. Persson, J. Phys.: Condens. Matter 20, 312001 (2008).

    ADS  Google Scholar 

  6. C. Campañá, M.H. Müser, M.O. Robbins, J. Phys.: Condens. Matter 20, 354013 (2008).

    Google Scholar 

  7. B.N.J. Persson, Phys. Rev. Lett. 99, 125502 (2007).

    Article  ADS  Google Scholar 

  8. C. Yang, B.N.J. Persson, J. Phys.: Condens. Matter 20, 215214 (2008).

    ADS  Google Scholar 

  9. B. Lorenz, B.N.J. Persson, J. Phys.: Condens. Matter 201, 015003 (2009).

    ADS  Google Scholar 

  10. F. Sahlin, A. Almqvist, R. Larsson, S. Glavatskih, Tribol. Int. 40, 1025 (2007).

    Article  Google Scholar 

  11. J.H. Tripp, ASME J. Lubrication Technol. 105, 485 (1983).

    Google Scholar 

  12. M. Scaraggi, B.N.J. Persson, G. Carbone, D. Dini, Soft Matter 7, 10395 (2011).

    Article  ADS  Google Scholar 

  13. B.N.J. Persson, J. Phys.: Condens. Matter 22, 265004 (2010).

    ADS  Google Scholar 

  14. B.N.J. Persson, O. Albohr, U. Tartaglino, A.I. Volokitin, E. Tosatti, J. Phys.: Condens. Matter 17, R1 (2005).

    ADS  Google Scholar 

  15. D. Bruggeman, Ann. Phys. (Leipzig) 24, 636 (1935).

    Article  ADS  Google Scholar 

  16. S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).

    Article  ADS  Google Scholar 

  17. M. Sahimi Heterogeneous Materials I (Springer, New York, 2003).

    Article  Google Scholar 

  18. B. Lorenz, B.N.J. Persson, Eur. Phys. J. E 31, 159 (2010).

    Article  Google Scholar 

  19. B.N.J. Persson, J. Chem. Phys. 115, 3840 (2001).

    Article  ADS  Google Scholar 

  20. B.N.J. Persson, Surf. Sci. Rep. 61, 201 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  21. A. Almqvist, C. Campañá, N. Prodanov, B.N.J. Persson, J. Mech. Phys. Solids 59, 2355 (2011).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. B. Lorenz, B.N.J Persson, J. Phys.: Condens. Matter 23, 355005 (2011).

    Google Scholar 

  23. B. Lorenz, B.N.J. Persson, Eur. Phys. J. E 32, 281 (2010).

    Article  Google Scholar 

  24. W. Humphrey, A. Dalke, K. Schulten, J. Molec. Graph. 14, 33 (1996).

    Article  Google Scholar 

  25. C. Yang, U. Tartaglino, B.N.J. Persson, Eur. Phys. J. E 19, 47 (2006).

    Article  Google Scholar 

  26. M. Griebel, S. Knapek, G. Zumbusch, Numerical Simulation in Molecular Dynamics (Springer, Berlin, Heidelberg, 2007).

  27. D.C. Rapaport, The Art of Molecular Dynamics Simulation, second edition (Cambridge University Press, Cambridge, 2004).

  28. Y. Mo, K.T. Turner, I. Szlufarska, Nature 457, 1116 (2009).

    Article  ADS  Google Scholar 

  29. J. Schmelzer Jr., S.A. Brown, A. Wurl, M. Hyslop, R.J. Blaikie, Phys. Rev. Lett. 88, 226802 (2002).

    Article  ADS  Google Scholar 

  30. A.D. Pogrebnjak, A.P. Shpak, N.A. Azarenkov, V.M. Beresnev, Phys. Usp. 52, 29 (2009).

    Article  ADS  Google Scholar 

  31. A. Kapitulnik, A. Aharony, G. Deutscher, D. Stauffer, J. Phys. A: Math. Gen. 16, L269 (1983).

    Article  ADS  Google Scholar 

  32. W.J. Boudville, T.C. McGill, Phys. Rev. B 39, 369 (1989).

    Article  ADS  Google Scholar 

  33. C. Vanneste, A. Gilabert, D. Sornette, Phys. Lett. A 155, 174 (1991).

    Article  ADS  Google Scholar 

  34. A.I. Olemskoi, V.F. Klepikov, Phys. Rep. 338, 571 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. B.A. Krick, J.R. Vail, B.N.J. Persson, W.G. Sawyer, Tribol. Lett. 45, 185 (2011).

    Article  Google Scholar 

  36. B.N.J. Persson, Eur. Phys. J. E 8, 385 (2002).

    Google Scholar 

  37. N. Rathore, P. Pranay, B. Eu, W. Ji, E. Wallis, PDA J. Pharm. Sci. Tech. 65, 468 (2011).

    Article  Google Scholar 

  38. S. Yamada, Tribol. Lett. 13, 167 (2002).

    Article  Google Scholar 

  39. L. Bureau, Phys. Rev. Lett. 104, 218302 (2010).

    Article  ADS  Google Scholar 

  40. B. Lorenz, B.N.J. Persson, S. Dieluweit, T. Tada, Eur. Phys. J. E 34, 129 (2011).

    Article  Google Scholar 

  41. I. Sivebaek, V. Samoilov, B.N.J. Persson, Phys. Rev. Lett. 108, 036102 (2012).

    Article  ADS  Google Scholar 

  42. B.N.J. Persson, F. Mugele, J. Phys.: Condens. Matter 16, R295 (2004).

    ADS  Google Scholar 

  43. B.N.J. Persson, C. Yang, J. Phys.: Condens. Matter 20, 315011 (2008).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. J. Persson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Persson, B.N.J., Prodanov, N., Krick, B.A. et al. Elastic contact mechanics: Percolation of the contact area and fluid squeeze-out. Eur. Phys. J. E 35, 5 (2012). https://doi.org/10.1140/epje/i2012-12005-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12005-2

Keywords

Navigation