Skip to main content
Log in

Continuum simulation of the discharge of the granular silo

A validation test for the μ(I) visco-plastic flow law

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Using a continuum Navier-Stokes solver with the μ(I) flow law implemented to model the viscous behavior, and the discrete Contact Dynamics algorithm, the discharge of granular silos is simulated in two dimensions from the early stages of the discharge until complete release of the material. In both cases, the Beverloo scaling is recovered. We first do not attempt a quantitative comparison, but focus on the qualitative behavior of velocity and pressure at different locations in the flow. A good agreement for the velocity is obtained in the regions of rapid flows, while areas of slow creep are not entirely captured by the continuum model. The pressure field shows a general good agreement, while bulk deformations are found to be similar in both approaches. The influence of the parameters of the μ(I) flow law is systematically investigated, showing the importance of the dependence on the inertial number I to achieve quantitative agreement between continuum and discrete discharge. However, potential problems involving the systems size, the configuration and “non-local” effects, are suggested. Yet the general ability of the continuum model to reproduce qualitatively the granular behavior is found to be very encouraging.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Le Pennec, K.J. Måløy, E.G. Flekkøy, J.C. Messager, M. Ammi, Phys. Fluids 10, 3072 (1998).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. A. Janda, R. Harich, I. Zuriguel, D. Maza, P. Cixous, A. Garcimartí n, Phys. Rev. E 79, 031302 (2009).

    Article  ADS  Google Scholar 

  3. D.M. Walker, Chem. Engng. Sci. 21, 975 (1966).

    Article  Google Scholar 

  4. C.E. Davies, V. Chew, New Zealand J. Dairy Sci. Techol. 18, 47 (1983).

    Google Scholar 

  5. W.A. Beverloo, H.A. Leniger, J. van de Velde, Chem. Eng. Sci. 15, 260 (1961).

    Article  Google Scholar 

  6. X.L. Wu, K.J. Maløy, A. Hansen, M. Ammi, D. Bideau, Phys. Rev. Lett. 71, 1363 (1993).

    Article  ADS  Google Scholar 

  7. J.M.N.T. Gray, K. Hutter, Contin. Mech. Thermodyn. 9, 341 (1997).

    Article  ADS  Google Scholar 

  8. A. Samadani, L. Mahadevan, A. Kudrolli, J. Fluid Mech. 452, 293 (2002).

    ADS  MATH  MathSciNet  Google Scholar 

  9. J.M. Rotter, J.M.F.G. Holst, J.Y. Ooi, A. M. Sanad, Philos. Trans. R. Soc. London, Ser. A 356, 2685 (1998).

    Article  ADS  Google Scholar 

  10. K. Kamrin, Int. J. Plasticity 26, 167 (2010).

    Article  MATH  Google Scholar 

  11. L. Staron, P.-Y. Lagrée, S. Popinet, Phys. Fluids 24, 113303 (2012).

    Article  Google Scholar 

  12. J. Sun, S. Sundaresan, arXiv:1207.1751v1 [cond-mat.soft] (2012).

  13. C. Mankoc, A. Janda, R. Arévalo, J.M. Pastor, I. Zuriguel, A. Garcimartí n, D. Maza, Granular Matter 7, 407 (2007).

    Article  Google Scholar 

  14. C.H. Rycroft, K. Kamrin, M.Z. Bazant, J. Mech. Phys. Solids 57, 828 (2009).

    Article  ADS  Google Scholar 

  15. P. Claudin, J.-P. Bouchaud, M.E. Cates, J.P. Wittmer, Phys. Rev. E 57, 4441 (1998).

    Article  ADS  Google Scholar 

  16. J.-N. Roux, Phys. Rev. E 61, 6802 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  17. GDR MiDi, Eur. Phys. J. E 14, 341 (2004).

    Article  Google Scholar 

  18. F. da Cruz, S. Emam, M. Prochnow, J.-N. Roux, F. Chevoir, Phys. Rev. E 72, 021309 (2005).

    Article  ADS  Google Scholar 

  19. P. Jop, Y. Forterre, O. Pouliquen, Nature 441, 727 (2006).

    Article  ADS  Google Scholar 

  20. G.B. Crosta, S. Imposimato, D. Roddeman, J. Geophys. Res. 114, F03020 (2009).

    ADS  Google Scholar 

  21. P.-Y. Lagrée, L. Staron, S. Popinet, J. Fluid Mech. 686, 378 (2011).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. L. Lacaze, R.R. Kerswell, Phys. Rev. Lett. 102, 108305 (2009).

    Article  ADS  Google Scholar 

  23. J. Chauchat, M. Médale, Comput. Methods Appl. Mech. Engrg. 199, 439 (2010).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. C. Ancey, P. Coussot, P. Evesque, J. Rheol. 43, 1673 (1999).

    Article  ADS  Google Scholar 

  25. T.J. Hatano, Phys. Rev. E 75, 060301 (2007).

    Article  ADS  Google Scholar 

  26. O. Pouliquen, Y. Forterre, Philos. Trans. R. Soc. A 367, 5091 (2009).

    Article  ADS  MATH  Google Scholar 

  27. K. Kamrin, G. Koval, Phys. Rev. Lett. 108, 178301 (2012).

    Article  ADS  Google Scholar 

  28. J. Sun, S. Sundaresan, J. Fluid Mech. 682, 590 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  29. S. Popinet, J. Comput. Phys. 190, 572 (2003).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. S. Popinet J. Comput. Phys.2285838(2009.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. M. Jean, J.-J. Moreau, Unilaterality and dry friction in the dynamics of rigid bodies collection, in Proceedings of the Contact Mechanics International Symposium, edited by A. Curnier (Presses Polytechniques et Universitaires Romandes, 1992) pp. 31-48.

  32. F. Radjai, V. Richefeu, Mech. Mater. 41, 715 (2009).

    Article  Google Scholar 

  33. F. Radjai, L. Brendel, S. Roux, Phys. Rev. E 54, 861 (1996).

    Article  ADS  Google Scholar 

  34. I. Zuriguel, A. Garcimartín, D. Maza, L.A. Pugnaloni, J.M. Pastor, Phys. Rev. E 71, 051303 (2005).

    Article  ADS  Google Scholar 

  35. A. Janda, I. Zuriguel, D. Maza, Phys. Rev. Lett. 108, 248001 (2013).

    Article  ADS  Google Scholar 

  36. A.V. Potapov, C.S. Campbell, Phys. Fluids 8, 2884 (1996).

    Article  ADS  MATH  Google Scholar 

  37. J. Choi, A. Kudrolli, M.Z. Bazant, J. Phys: Condens. Matter, 17, S2533 (2005).

    ADS  Google Scholar 

  38. I. Bartos, I.M. Jánosi, Granular Matter 9, 81 (2006).

    Article  Google Scholar 

  39. H.G. Sheldon, D.J. Durian, Granular Matter 12, 579 (2010).

    Article  Google Scholar 

  40. M.A. Aguirre, J.G. Grande, A. Calvo, L.A. Pugnaloni, J.-C. Géminard, Phys. Rev. E 83, 061305 (2011).

    Article  ADS  Google Scholar 

  41. C. González-Montellano, F. Ayuga, J.Y. Ooi, Granular Matter 13, 149 (2011).

    Article  Google Scholar 

  42. J.E. Hilton, P.W. Cleary, Phys. Rev. E 84, 011307 (2011).

    Article  ADS  Google Scholar 

  43. H.A. Janssen, Zeitschr. Vereines Deutsch. Ing. 39, 1045 (1895).

    Google Scholar 

  44. M. Sperl, Granular Matter 8, 59 (2006).

    Article  MATH  Google Scholar 

  45. G. Ovarlez, C. Fond, E. Clément, Phys. Rev. E 67, 060302 (2003).

    Article  ADS  Google Scholar 

  46. C. Perge, M.A. Aguirre, P.A. Gago, L.A. Pugnaloni, D. Le Tourneau, J.-C. Géminard, Phys. Rev. E 85, 021303 (2012).

    Article  ADS  Google Scholar 

  47. R.M. Nedderman, Static and Kinematics of Granular Materials (Cambridge University Press, 1992).

  48. D. Hirshfeld, Y. Radzyner, D.C. Rapaport, Phys. Rev. E 56, 4404 (1997).

    Article  ADS  Google Scholar 

  49. P.A. Langston, U. Tüzün, D.M. Heyes, Chem. Engin. Sci. 50, 967 (1995).

    Article  Google Scholar 

  50. M.F. Djouwe Meffeja, PhD Thesis, Université de Rennes 1 (2012).

  51. A. Garcimartí n, I. Zuriguel, A. Janda, D. Maza, Phys. Rev. E 84, 031309 (2011).

    Article  ADS  Google Scholar 

  52. R. Artoni, A.C. Santomaso, M. Go, P. Canu, Phys. Rev. Lett. 108, 238002 (2012).

    Article  ADS  Google Scholar 

  53. P. Jop, Y. Forterre, O. Pouliquen, J. Fluid Mech. 541, 167 (2005).

    Article  ADS  MATH  Google Scholar 

  54. O. Pouliquen, Phys. Fluids 11, 542 (1999).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  55. D.L. Henann, K. Kamrin, Proc. Natl. Acad. Sci. U.S.A. 110, 6730 (2013).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Staron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staron, L., Lagrée, P.Y. & Popinet, S. Continuum simulation of the discharge of the granular silo. Eur. Phys. J. E 37, 5 (2014). https://doi.org/10.1140/epje/i2014-14005-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14005-6

Keywords

Navigation