Skip to main content
Log in

Effects of interplay of nanoparticles, surfactants and base fluid on the surface tension of nanocolloids

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

A systematically designed study has been conducted to understand and demarcate the degree of contribution by the constituting elements to the surface tension of nanocolloids. The effects of elements such as surfactants, particles and the combined effects of these on the surface tension of these complex fluids are studied employing the pendant drop shape analysis method by fitting the Young-Laplace equation. Only the particle has shown an increase in the surface tension with particle concentration in a polar medium like DI water, whereas only a marginal effect of particles on surface tension in weakly polar mediums like glycerol and ethylene glycol has been demonstrated. Such behaviour has been attributed to the enhanced desorption of particles to the interface and a theory has been presented to quantify this. The combined particle and surfactant effect on the surface tension of a complex nanofluid system showed a decreasing behaviour with respect to the particle and surfactant concentration with a considerably feeble effect of particle concentration. This combined colloidal system recorded a surface tension value below the surface tension of an aqueous surfactant system at the same concentration, which is a counterintuitive observation as only the particle results in an increase in the surface tension and only the surfactant results in a decrease in the surface tension. The possible physical mechanism behind such an anomaly happening at the complex fluid air interface has been explained. Detailed analyses based on thermodynamic, mechanical and chemical equilibrium of the constituents and their adsorption-desorption characteristics as extracted from the Gibbs adsorption analysis have been provided. The present paper conclusively explains several physical phenomena observed, yet hitherto unexplained, in the case of the surface tension of such complex fluids by segregating the individual contributions of each component of the colloidal system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.K. Das, S.U.S. Choi, H.E. Patel, Heat Transfer Eng. 27, 3 (2006)

    Article  ADS  Google Scholar 

  2. D.H. Kumar, H.E. Patel, V.R.R. Kumar, T. Sundararajan, T. Pradeep, S.K. Das, Phys. Rev. Lett. 93, 144301 (2004)

    Article  ADS  Google Scholar 

  3. K. Khanafer, K. Vafai, Int. J. Heat Mass Transfer 54, 4410 (2011)

    Article  Google Scholar 

  4. M.H.U. Bhuiyan, R. Saidur, R.M. Mostafizur, I.M. Mahbubul, M.A. Amalina, Int. Commun. Heat Mass Transfer 65, 82 (2015)

    Article  Google Scholar 

  5. J. Chinnam, D.K. Das, R.S. Vajjha, J.R. Satti, Int. J. Therm. Sci. 98, 68 (2015)

    Article  Google Scholar 

  6. S. Tanvir, L. Qiao, Nanoscale Res. Lett. 7, 226 (2012)

    Article  ADS  Google Scholar 

  7. S. Vafaei, D. Wen, T. Borca-Tasciuc, Langmuir 27, 2211 (2011)

    Article  Google Scholar 

  8. Ruey-Hung, Chen, Phuoc Tran X., Martello Donald, Int. J. Heat Mass Transfer 54, 2459 (2011)

    Article  Google Scholar 

  9. S. Lim, H. Horiuchi, A.D. Nikolov, D. Wasan, Langmuir 31, 5827 (2015)

    Article  Google Scholar 

  10. P.R. Waghmare, S.K. Mitra, Langmuir 26, 17082 (2010)

    Article  Google Scholar 

  11. J.T. Cieslinski, K.A. Krygier, Exp. Therm. Fluid Sci. 59, 258 (2014)

    Article  Google Scholar 

  12. S.L. Song, J.H. Lee, S.H. Chang, Exp. Therm. Fluid Sci. 52, 12 (2014)

    Article  Google Scholar 

  13. M.N. Pantzali, A.G. Kanaris, K.D. Antoniadis, A.A. Mouza, S.V. Paras, Int. J. Heat Fluid Flow 30, 691 (2009)

    Article  Google Scholar 

  14. H. Peng, G. Ding, H. Hu, Exp. Therm. Fluid Sci. 35, 960 (2011)

    Article  Google Scholar 

  15. S.G. Kandlikar, Int. J. Therm. Sci. 49, 1073 (2010)

    Article  Google Scholar 

  16. S.E. Feller, R.W. Pastor, J. Chem. Phys. 111, 1281 (1999)

    Article  ADS  Google Scholar 

  17. A.R. Shah, R. Banerjee, Soft Matter 8, 11911 (2012)

    Article  ADS  Google Scholar 

  18. A. Stocco, W. Drenckhan, E. Rio, D. Langevin, B.P. Binks, Soft Matter 5, 2215 (2009)

    Article  ADS  Google Scholar 

  19. S.S. Khaleduzzaman, I.M. Mahbubul, I.M. Shahrul, R. Saidur, Int. Commun. Heat Mass Transfer 49, 110 (2013)

    Article  Google Scholar 

  20. R.G. Chaudhuri, S. Paria, J. Colloid Interface Sci. 434, 141 (2014)

    Article  Google Scholar 

  21. A. Huminic, G. Huminic, C. Fleaca, F. Dumitrache, I. Morjan, Powder Technol 284, 78 (2015)

    Article  Google Scholar 

  22. S. Vafaei, A. Purkayastha, A. Jain, G. Ramanath, T. Borca-Tasciuc, Nanotechnology 20, 185702 (2009)

    Article  ADS  Google Scholar 

  23. H. Ma, M. Luo, L.L. Dai, Phys. Chem. Chem. Phys. 10, 2207 (2008)

    Article  Google Scholar 

  24. J. Aguiar, P. Carpena, J.A. Molina-Bolivar, C.C. Ruiz, J. Colloid Interface Sci. 258, 116 (2003)

    Article  Google Scholar 

  25. A.J. Prosser, E.I. Franses, Colloids Surf. A: Physicochem. Eng. Asp. 178, 1 (2001)

    Article  Google Scholar 

  26. J. Eastoe, J.S. Dalton, Adv. Colloid Interface Sci. 85, 103 (2000)

    Article  Google Scholar 

  27. R. Kumar, D. Milanova, Appl. Phys. Lett. 94, 073107 (2009)

    Article  ADS  Google Scholar 

  28. A. Maestro, E. Guzman, E. Santini, F. Ravera, L. Liggieri, F. Ortega, R.G. Rubio, Soft Matter 8, 837 (2012)

    Article  ADS  Google Scholar 

  29. C. Zeng, H. Bissig, A.D. Dinsmore, Solid State Commun. 139, 547 (2006)

    Article  ADS  Google Scholar 

  30. H.S. Wi, S. Cingarapu, K.J. Klabunde, B.M. Law, Langmuir 27, 9979 (2011)

    Article  Google Scholar 

  31. S.P. McBride, B.M. Law, Phys. Rev. Lett. 109, 196101 (2012)

    Article  ADS  Google Scholar 

  32. G. Lu, Y.Y. Duan, X.D. Wang, J. Nanopart. Res. 16, 2564 (2014)

    Article  ADS  Google Scholar 

  33. V. Garbin, J.C. Crocker, K.J. Stebe, J. Colloid Interface Sci. 387, 1 (2012)

    Article  Google Scholar 

  34. W.B. Russel, D.A. Saville, W.R. Schowalter, Colloidal Dispersions (Cambridge University Press, 1989) ISBN: 0 521 34188 4

  35. P. Ghosh, Colloid and Interface Science (PHI Learning, New Delhi, 2009)

  36. V. Garbin, I. Jenkins, T. Sinno, J.C. Crocker, K.J. Stebe, Phys. Rev. Lett. 114, 108301 (2015)

    Article  ADS  Google Scholar 

  37. A.J.B. Milne, J.A.W. Elliott, A. Amirfazli, Phys. Chem. Chem. Phys 17, 5574 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarit K. Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harikrishnan, A.R., Dhar, P., Agnihotri, P.K. et al. Effects of interplay of nanoparticles, surfactants and base fluid on the surface tension of nanocolloids. Eur. Phys. J. E 40, 53 (2017). https://doi.org/10.1140/epje/i2017-11541-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11541-5

Keywords

Navigation