Skip to main content
Log in

Rotating flow of Ag-CuO/H2O hybrid nanofluid with radiation and partial slip boundary effects

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The main object of the present paper is to examine and compare the improvement of flow and heat transfer characteristics between a rotating nanofluid and a newly discovered hybrid nanofluid in the presence of velocity slip and thermal slip. The influence of thermal radiation is also included in the present study. The system after applying the similarity transformations is solved numerically by using the bvp-4c scheme. Additionally, numerical calculations for the coefficient of skin friction and local Nusselt number are introduced and perused for germane parameters. The comparison between water, nanofluid and hybrid nanofluid on velocity and temperature is also visualized. It is observed that the velocity and temperature distributions are decreasing functions of the slip parameter. Temperature is boosted by thermal radiation and rotation. It is found that the heat transfer rate of the hybrid nanofluid is higher as compared to the traditional nanofluid.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. Maxwell, A Treatise on Electricity and Magnetism, Vol. 1, third edition (Dover, New York, 1954) pp. 440,441

  2. J. Happel, AIChE J. 4, 197 (1958)

    Article  Google Scholar 

  3. R.L. Hamilton, O.K. Crosser, Ind. Eng. Chem. Fundam. 1, 187 (1962)

    Article  Google Scholar 

  4. A.S. Ahuja, Appl. Phys. 46, 3408 (1975)

    Article  Google Scholar 

  5. S.K. Das, S.U.S. Choi, W. Yu, T. Pradeep, Nanofluids: Science and Technology (Wiley, NJ, 2007)

  6. S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, paper No. ANL/MSD/CP--84938

  7. S. Rashidi, S. Akar, M. Bovand, R. Ellahi, J. Renew. Energy 115, 400 (2018)

    Article  Google Scholar 

  8. K.M. Shirvan, R. Ellahi, M. Mamourian, M. Moghiman, Int. J. Heat Mass Transfer 107, 1110 (2017)

    Article  Google Scholar 

  9. R. Ellahi, M.H. Tariq, M. Hassan, K. Vafai, J. Mol. Liq. 229, 339 (2017)

    Article  Google Scholar 

  10. K.M. Shirvan, M. Mamourian, S. Mirzakhanlari, R. Ellahi, Powder Technol. 313, 99 (2017)

    Article  Google Scholar 

  11. J.A. Esfahani, M. Akbarzadeh, S. Rashidi, M.A. Rosenb, R. Ellahi, Int. J. Heat Mass Transfer 109, 1162 (2017)

    Article  Google Scholar 

  12. S. Rashidi, J.A. Esfahani, R. Ellahi, Appl. Sci. 7, 431 (2017)

    Article  Google Scholar 

  13. M. Hassan, A. Zeeshan, A. Majeed, R. Ellahi, J. Magn. & Magn. Mater. 443, 36 (2017)

    Article  ADS  Google Scholar 

  14. T. Hayat, S. Nadeem, Chin. Phys. B 25, 114701 (2016)

    Article  ADS  Google Scholar 

  15. S.U. Rahman, R. Ellahi, S. Nadeem, Q.M.Z. Zia, J. Mol. Liq. 218, 484 (2016)

    Article  Google Scholar 

  16. M. Akbarzadeh, S. Rashidi, M. Bovand, R. Ellahi, J. Mol. Liq. 220, 1 (2016)

    Article  Google Scholar 

  17. K.M. Shirvan, M. Mamourian, S. Mirzakhanlari, R. Ellahi, J. Mol. Liq. 220, 888 (2016)

    Article  Google Scholar 

  18. N. Shehzad, A. Zeeshan, R. Ellahi, K. Vafai, J. Mol. Liq. 222, 446 (2016)

    Article  Google Scholar 

  19. R. Ellahi, A. Zeeshan, M. Hassan, Int. J. Numer. Methods Heat Fluid Flow 26, 2160 (2016)

    Article  Google Scholar 

  20. M. Sheikholeslami, Q.M. Zia, R. Ellahi, Appl. Sci. 6, 324 (2016)

    Article  Google Scholar 

  21. T. Hayat, S. Nadeem, The effects of MHD and buoyancy on Hematite water-based fluid past a convectively heated stretching sheet, Neural Comput. Appl. (2017) https://doi.org/10.1007/s00521-017-3139-9

  22. T. Hayat, S. Nadeem, Results Phys. 8, 397 (2017)

    Article  ADS  Google Scholar 

  23. T. Hayat, S. Nadeem, Results Phys. 7, 3910 (2017)

    Article  ADS  Google Scholar 

  24. S. Lee, S.U.S. Choi, S. Li, J.A. Eastman, J. Heat Transfer 121, 280 (1999)

    Article  Google Scholar 

  25. W. Evans, J. Fish, P. Keblinski, Appl. Phys. Lett. 88, 093116 (2006)

    Article  ADS  Google Scholar 

  26. Y. Li, J. Zhou, S. Tung, E. Schneider, S. Xi, Powder Technol. 196, 89 (2009)

    Article  Google Scholar 

  27. T. Takabi, S. Salehi, Adv. Mech. Eng. 6, 147059 (2014)

    Article  Google Scholar 

  28. R. Nasrin, M. Alim, J. Appl. Fluid Mech. 7, 543 (2014)

    Google Scholar 

  29. R. Nimmagadda, K. Venkatasubbaiah, Eur. J. Mech. B/Fluids 52, 19 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. T. Hayat, S. Nadeem, Results Phys. 7, 2317 (2017)

    Article  ADS  Google Scholar 

  31. S. Suresh, K. Venkitaraj, P. Selvakumar, M. Chandrasekar, Colloids Surf. A 388, 41 (2011)

    Article  Google Scholar 

  32. A. Moghadassi, E. Ghomi, F. Parvizian, Int. J. Therm. Sci. 92, 50 (2015)

    Article  Google Scholar 

  33. M.H. Esfe, S.H. Rostamian, A. Alirezaie, Appl. Therm. Eng. 111, 1202 (2017)

    Article  Google Scholar 

  34. J. Sarkar, P. Ghosh, A. Adil, Renew. Sustain. Energy Rev. 43, 164 (2015)

    Article  Google Scholar 

  35. T. Tayebi, A.J. Chamkha, Numer. Heat Transfer, Part A: Appl. 70, 1141 (2016)

    Article  ADS  Google Scholar 

  36. S. Suriya Uma Devi, S.P. Anjali Devi, Can. J. Phys. 94, 490 (2016)

    Article  Google Scholar 

  37. B. Takabi, A.M. Gheitaghy, P. Tazraei, J. Thermophys. Heat Transfer 30, 523 (2016)

    Article  Google Scholar 

  38. A. Yoshimura, R.K. Prudhomme, J. Rheol. 32, 53 (1998)

    Article  Google Scholar 

  39. M. Turkyilmazoglu, J. Heat Transfer 133, 122602 (2011)

    Article  Google Scholar 

  40. M. Turkyilmazoglu, Int. J. Therm. Sci. 50, 2264 (2011)

    Article  Google Scholar 

  41. M.M. Rashidi, N. Vishnu Ganesh, A.K. Abdul Hakeem, B. Ganga, J. Mol. Liq. 198, 234 (2014)

    Article  Google Scholar 

  42. T. Hayat, S. Qayyum, M. Imtiaz, A. Alsaedi, AIP Adv. 6, 025012 (2016)

    Article  ADS  Google Scholar 

  43. L.F. Shampine, I. Gladwell, S. Thompson, Solving ODEs with MATLAB (Cambridge University Press, Cambridge, UK, 2003) ISBN 0-521-53094-6

  44. L.F. Shampine, M.W. Reichelt, J. Kierzenka, Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c, http://www.mathworks.com/bvptutorial

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. U. Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Nadeem, S. & Khan, A.U. Rotating flow of Ag-CuO/H2O hybrid nanofluid with radiation and partial slip boundary effects. Eur. Phys. J. E 41, 75 (2018). https://doi.org/10.1140/epje/i2018-11682-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11682-y

Keywords

Navigation