Skip to main content
Log in

Ultraviolet complete electroweak model without a Higgs particle

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

An electroweak model with running coupling constants described by an energy dependent entire function is utraviolet complete and avoids unitarity violations for energies above 1 TeV. The action contains no physical scalar fields and no Higgs particle and the physical electroweak model fields are local and satisfy microcausality. The W and Z masses are compatible with a symmetry breaking SU(2)L×U(1)Y \( \rightarrow\) U(1)em , which retains a massless photon. The vertex couplings possess an energy scale \( \Lambda_{W}^{}\) > 1 TeV predicting scattering amplitudes that can be tested at the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ALEPH, DELPHI, L3, OPAL Collaborations, LEP Working Group for Higgs boson searches (R. Barate et al.), Phys. Lett. B 565, 61 (2003) (arXiv:hep-ex/0306033)

    Article  ADS  Google Scholar 

  2. ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD Collaborations, LEP Electroweak Working Group, Tevatron Electroweak Working Group, LD Electroweak, Heavy Flavour Groups, arXiv:0911.2604[hep-ex]

  3. The TEVNPH Working Group of the CDF, D0 Collaborations, arXiv:1007.4587 [hep-ex]

  4. See, for example, C. Grojean, arXiv:0910.4976 [hep-ph] and references therein

  5. J.W. Moffat, Mod. Phys. Lett. A 6, 1011 (1991)

    Article  ADS  Google Scholar 

  6. J.W. Moffat, arXiv/0709.4269 [hep-ph]

  7. J.W. Moffat, V.T. Toth, arXiv:0812.1991 [hep-ph]

  8. J.W. Moffat, V.T. Toth, arXiv:0812.1994 [hep-ph]

  9. D. Bettinelli, R. Ferrari, A. Quadri, Phys. Rev. D 79, 125028 (2009) arXiv:0903.0281 [hep-th]

    Article  ADS  Google Scholar 

  10. S. Weinberg, Phys. Rev. Lett. 19, 1267 (1967)

    Article  ADS  Google Scholar 

  11. A. Salam, Elementary Particle Physics, edited by N. Svartholm (Almqvist and Wiksells, Stockholm, 1968)

  12. F. Halzen, A.D. Martin, Quarks and Leptons: An Introductory Course in Modern Particle Physics (John Wiley & Sons, New York, 1984)

  13. I.J.R. Aitchison, A.J.G. Hey, Gauge Theories in Particle Physics, Volume II: QCD and the Electroweak Theory, 3rd edition (Taylor and Francis, UK, 2004)

  14. J.W. Moffat, Eur. Phys. J. Plus 126, 43 (2011) arXiv:1008.2482 [gr-qc]

    Article  Google Scholar 

  15. A. Burnel, Phys Rev. D 33, 2985 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  16. G. ’t Hooft, Nucl. Phys. B 33, 173 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  17. G. ’t Hooft, Nucl. Phys. B 35, 167 (1971)

    Article  ADS  Google Scholar 

  18. G. ’t Hooft, M. Veltman, Nucl. Phys. B 44, 189 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  19. G. ’t Hooft, M. Veltman, Nucl. Phys. B 50, 318 (1972)

    Article  MathSciNet  Google Scholar 

  20. E. Titchmarsh, Theory of Functions, 2nd edition (Oxford University Press, 1939)

  21. R.P. Boas Jr. Entire Functions (Academic Press Inc., New York, NY, 1954)

    Article  MathSciNet  Google Scholar 

  22. A.S.B. Holland, Introduction to the Theory of Entire Functions (Academic Press, New York and London, 1973)

  23. J.W. Moffat, Phys. Rev. D 41, 1177 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  24. D. Evens, J.W. Moffat, G. Kleppe, R.P. Woodard, Phys. Rev. D 43, 499 (1991)

    Article  ADS  Google Scholar 

  25. R.E. Cutkosky, J. Math. Phys. 1, 429 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. W. Greiner, J. Reinhardt, Field Quantization (Springer, 1996)

  27. P.A.M. Dirac, Lectures on Quantum Mechanics (Dover, 2001)

  28. A.M. Jaffe, Phys. Rev. Lett. 17, 661 (1966)

    Article  ADS  Google Scholar 

  29. A.M. Jaffe, Phys. Rev. 158, 1454 (1967)

    Article  ADS  Google Scholar 

  30. N.N. Meiman, Zh. Eksp. Teor. Fiz. 47, 1966 (1964)

    MathSciNet  Google Scholar 

  31. G.V. Efimov, Commun. Math. Phys. 5, 42 (1967)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. N.V. Hieu, Ann. Phys. (N.Y.) 33, 428 (1965)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. J.G. Taylor, Ann. Phys. (N.Y.) 68, 484 (1971)

    Article  ADS  Google Scholar 

  34. F. Constantinescu, J. Math. Phys. 12, 293 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  35. J.G. Taylor, F. Constantinescu, Commun. Math. Phys. 30, 211 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  36. G.V. Efimov, Commun. Math. Phys. 7, 138 (1968)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. G.V. Efimov, Ann. Phys. (N.Y.) 71, 466 (1972)

    Article  ADS  Google Scholar 

  38. Particle Data Group, Phys. Lett. B 667, 1 (2008) (http://pdg.lbl.gov

    Article  ADS  Google Scholar 

  39. G. Kleppe, R.P. Woodard, Nucl. Phys. B 388, 81 (1992) arXiv:hep-th/9203016

    Article  ADS  Google Scholar 

  40. H. Haber, E. Logan, Phys. Rev. D 62, 015011 (2000)

    Article  ADS  Google Scholar 

  41. J.W. Moffat, arXiv:1103.0979 [hep-ph]

  42. J.W. Moffat, Phys. Rev. D 39, 3654 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Moffat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moffat, J.W. Ultraviolet complete electroweak model without a Higgs particle. Eur. Phys. J. Plus 126, 53 (2011). https://doi.org/10.1140/epjp/i2011-11053-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2011-11053-5

Keywords

Navigation