Skip to main content

Advertisement

Log in

A suite of user-friendly global climate models: Hysteresis experiments

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A hierarchy of global spectral circulation models is introduced ranging from the shallow-water system via the primitive-equation dynamical core of the atmosphere to the Planet Simulator as a Global Climate Model (GCM) of Intermediate Complexity (MIC) which can be used to run climate and paleo-climate simulations for time scales up to ten thousand years or more in an acceptable real time. The priorities in development are set to speed, easy handling and portability with a modular structure suitable for problem-dependent configuration. Adaptions exist for the planetary atmospheres of Mars and of Saturn’s moon Titan and are being extended. Common coupling interfaces enable the addition of ocean, ice, vegetation models and more. An interactive mode with a Model Starter and a Graphical User Interface (GUI) is available to select a configuration from the available model suite, to set its parameters and inspect atmospheric fields while changing the models’ parameters on the fly. This is especially useful for teaching, debugging and tuning of parameterizations. An updated overview of the model suite’s features is presented based on the Earth-like climate model Planet Simulator with mixed-layer ocean introducing static and memory hysteresis in terms of a parameter sweep of the solar constant and CO2 concentrations. The static hysteresis experiment demonstrates that the solar constant varying by 20% reveals warm and snowball Earth climate regimes depending on the history of the system. This hysteresis subjected to a thermodynamic analysis shows the following features: i) Both climate regimes are characterized by global mean surface temperature and entropy growing with increasing solar constant. ii) The climate system’s efficiency decreases (increases) with increasing solar constant in present-day warm (snowball) climate conditions. iii) Climate transitions near bifurcation points are characterized by high efficiency associated with the system’s large distance from the stable regime. Memory hysteresis evolves when changing the direct atmospheric radiative forcing which, associated with a well-mixed CO2 concentration, modifies the planetary thermodynamic state, and hence the surface temperature. The hysteresis effected by different CO2 change rates is analysed: i) The response is due to infrared cooling (for constant temperature lapse-rate) which, in turn, is related to the surface temperature through the Stefan-Boltzmann law in a ratio proportional to the new infrared opacity. Subsequent indirect effects, that are water-vapour-greenhouse and ice-albedo feedbacks, enhance the response. ii) Different rates of CO2 variation may lead to similar transient climates characterized by the same global mean surface temperature but different values of CO2 concentration. iii) Far from the bifurcation points, the model’s climate depends on the history of the radiative forcing thus displaying a hysteresis cycle that is neither static nor dynamical, but is related to the memory response of the model determined by the mixed-layer depth of the ocean. Results are supported by a zero-dimensional energy balance model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Pedlowsky, Geophysical Fluid Dynamics (Springer Verlag, Heidelberg, 1987).

  2. J.P. Peixoto, A.H. Oort, Physics of Climate (Springer, New York, 1992).

  3. B. Saltzman, Dynamical Paleoclimatology: Generalized Theory of Global Climate Change (Academic Press, 2002).

  4. K. Fraedrich, E. Kirk, U. Luksch, F. Lunkeit, Meteorol. Z. 14, 735 (2005).

    Article  Google Scholar 

  5. K. Fraedrich, H. Jansen, E. Kirk, U. Luksch, F. Lunkeit, Meteorol. Z. 14, 299 (2005).

    Article  Google Scholar 

  6. K. Fraedrich, H. Jansen, E. Kirk, F. Lunkeit, Meteorol. Z. 14, 305 (2005).

    Article  Google Scholar 

  7. B.J. Hoskins, A.J. Simmons, Quart. J. Roy. Meteor. Soc. 101, 637 (1975).

    Article  ADS  Google Scholar 

  8. S.A. Orszag, J. Atmos. Sci. 27, 890 (1970).

    Article  ADS  Google Scholar 

  9. R. Asselin, Mon. Weather Rev. 100, 487 (1972).

    Article  ADS  Google Scholar 

  10. S. Espa, I. Bordi, T. Frisius, K. Fraedrich, A. Sutera, Geophys. Astrophys. Fluid Dyn., doi 10.1080/03091929.2011.637301 (2012).

  11. T. Frisius, K. Fraedrich, W. Wang, X. Zhu, Ocean Modelling 30, 310 (2009).

    Article  ADS  Google Scholar 

  12. I.N. James, L.J. Gray, Quart. J. R. Meteorol. Soc. 112, 1231 (1986).

    Article  ADS  Google Scholar 

  13. E. Roeckner, K. Arpe, L. Bengtsson, S. Brinkop, L. Duemenil, M. Esch, E. Kirk, F. Lunkeit, M. Ponater, B. Rockel, R. Sausen, U. Schlese, S. Schubert, M. Windelband, Max-Planck-Institut für Meteorologie, Report 93 (1992).

  14. L. Laursen, E. Eliasen, Tellus 41, 385 (1989).

    Google Scholar 

  15. A.A. Lacis, J.E. Hansen, J. Atmos. Sci. 31, 118 (1974).

    Article  ADS  Google Scholar 

  16. A.E.S. Green, Appl. Opt. 3, 203 (1964).

    Article  ADS  Google Scholar 

  17. G.L. Stephens, Mon. Weather Rev. 112, 826 (1984).

    Article  ADS  Google Scholar 

  18. T. Sasamori, J. Appl. Meteror. 7, 721 (1968).

    Article  ADS  Google Scholar 

  19. G.L. Stephens, S. Ackermann, E.A. Smith, J. Atmos. Sci. 41, 687 (1984).

    Article  ADS  Google Scholar 

  20. H.L. Kuo, J. Atmos. Sci. 31, 1232 (1974).

    Article  ADS  Google Scholar 

  21. A. Slingo, J.M. Slingo, J. Geophys. Res. 96, 341 (1991).

    Article  Google Scholar 

  22. R. Sausen, S. Schubert, L. Duemenil, J. Hydrol. 155, 337 (1994).

    Article  ADS  Google Scholar 

  23. E. Dahms, H. Borth, F. Lunkeit, K. Fraedrich, J. Meteorol. Soc. Jpn 89, 399 (2011).

    Article  Google Scholar 

  24. K. Fraedrich, F. Lunkeit, Tellus A 60, 921 (2008).

    Article  ADS  Google Scholar 

  25. E. Dahms, F. Lunkeit, K. Fraedrich, J. Clim. (2012) unpublished.

  26. A. Schmittner, T.A.M. Silva, K. Fraedrich, E. Kirk, F. Lunkeit, J. Clim. 24, 2814 (2011).

    Article  ADS  Google Scholar 

  27. K. Hasselmann, Prog. Oceanogr. 11, 69 (1982).

    Article  ADS  Google Scholar 

  28. E. Maier-Reimer, U. Mikolajewicz, K. Hasselmann, J. Phys. Oceanogr. 23, 731 (1993).

    Article  ADS  Google Scholar 

  29. D.E. Farrow, D.P. Stevens, J. Phys. Oceanogr. 25, 1731 (1995).

    Article  ADS  Google Scholar 

  30. B.P. Leonard, Comput. Methods Appl. Mech. Eng. 19, 59 (1979) DOI:10.1016/0045-7825(79)90034-3.

    Article  ADS  MATH  Google Scholar 

  31. A. Arakawa, V.R. Lamb, in Methods in Computational Physics, Vol. 17 (Academic Press, 1977).

  32. M. Wenzel, J. Schröter, J. Phys. Oceanogr. 37, 203 (2007) DOI:10.1175/JPO3007.1.

    Article  ADS  Google Scholar 

  33. A.J. Semtner, jr., J. Phys. Oceanogr. 6, 379 (1976).

    Article  ADS  Google Scholar 

  34. E. Kirk, K. Fraedrich, F. Lunkeit, C. Ulmen, CSPR report, 45 (Linköping Universitet, 2009).

  35. V. Lucarini, K. Fraedrich, F. Lunkeit, Atmos. Chem. Phys. 10, 9729 (2010).

    Article  ADS  Google Scholar 

  36. M.I. Freidlin, I.D. Mayergozy, Physica B 306, 15 (2001).

    Article  ADS  Google Scholar 

  37. G.H. Goldsztein, F. Broner, S.H. Strogatz, SIAM. J. Appl. Math. 57, 1163 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  38. I. Bordi, K. Fraedrich, A. Sutera, X. Zhu, to be published in Theor. Appl. Climatol. (2012).

  39. A. Kleidon, K. Fraedrich, T. Kunz, F. Lunkeit, Geophys. Res. Lett. 30, 2223 (2003).

    Article  ADS  Google Scholar 

  40. T. Kunz, K. Fraedrich, E. Kirk, Clim. Dyn. 30, 2 (2008).

    Article  Google Scholar 

  41. V. Lucarini, K. Fraedrich, F. Lunkeit, Q. J. R. Meterol. Soc. 136, 2438 (2010).

    Article  Google Scholar 

  42. V. Lucarini, K. Fraedrich, F. Ragone, J. Atmos. Sci. 68, 659 (2011).

    Article  Google Scholar 

  43. D.R. Johnson, International Geophysics Series, Vol. 70 (Academic Press, New York, 2000).

  44. R. Boschi, V. Lucarini, S. Pascale, in Beyond the Second Law, edited by R. Dewar (Springer Verlag, 2012).

  45. C.J. Poulsen, R.L. Jacob, Paleoceanography 19, PA4021 (2004) DOI:10.1029/2004PA001056.

    Article  ADS  Google Scholar 

  46. A. Voigt, J. Marotzke, Clim. Dyn. 35, 887 (2009).

    Article  Google Scholar 

  47. R.T. Wetherald, S. Manabe, J. Atmos. Sci. 32, 2044 (1975).

    Article  ADS  Google Scholar 

  48. K. Fraedrich, Q. J. R. Meteorol. Soc. 105, 147 (1979).

    Article  ADS  Google Scholar 

  49. G. Myhre, E.J. Highwood, K.P. Shine, Geophys. Res. Lett. 25, 2715 (1998).

    Article  ADS  Google Scholar 

  50. I.M. Held, M. Winton, K. Takahashi, T. Delworth, F. Zeng, G.K. Vallis, J. Clim. 23, 2418 (2010).

    Article  ADS  Google Scholar 

  51. X. Zhu, K. Fraedrich, R. Blender, Geophys. Res. Lett. 33, L21604 (2006).

    Article  ADS  Google Scholar 

  52. X. Zhu, K. Fraedrich, Z. Liu, R. Blender, J. Clim. 23, 5021 (2010).

    Article  ADS  Google Scholar 

  53. J. Segschneider, B. Grieger, H.U. Keller, F. Lunkeit, E. Kirk, K. Fraedrich, A. Rhodin, R. Greve, Planetary and Space Sci. 53, 659 (2005).

    Article  ADS  Google Scholar 

  54. S. Bathiany, M. Claussen, K. Fraedrich, Clim. Dyn. 38, 1775 (2012).

    Article  Google Scholar 

  55. J. Liakka, Tellus 64, 11088 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Fraedrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fraedrich, K. A suite of user-friendly global climate models: Hysteresis experiments. Eur. Phys. J. Plus 127, 53 (2012). https://doi.org/10.1140/epjp/i2012-12053-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2012-12053-7

Keywords

Navigation