Skip to main content
Log in

Numerical solution for boundary layer flow due to a nonlinearly stretching sheet with variable thickness and slip velocity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This article presents a numerical solution for the flow of a Newtonian fluid over an impermeable stretching sheet with a power law surface velocity, slip velocity and variable thickness. The flow is caused by a nonlinear stretching of a sheet. The governing partial differential equations are transformed into a nonlinear ordinary differential equation which is using appropriate boundary conditions for various physical parameters. The numerical solutions of the resulting nonlinear ODEs are found by using the efficient finite difference method (FDM). The effects of the slip parameter and the wall thickness parameter on the flow profile are presented. Moreover, the local skin friction is presented. Comparison of the obtained numerical results is made with previously published results in some special cases, and excellent agreement is noted. The results attained in this paper confirm the idea that FDM is a powerful mathematical tool and can be applied to a large class of linear and nonlinear problems arising in different fields of science and engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.J. Crane, Z. Angew. Math. Phys. 21, 645 (1970).

    Article  Google Scholar 

  2. P.S. Gupta, A.S. Gupta, Can. J. Chem. Eng. 55, 744 (1979).

    Article  Google Scholar 

  3. V.M. Soundalgekar, T.V. Ramana, Warme Stoffübertrag. 14, 91 (1980).

    Article  ADS  Google Scholar 

  4. L.J. Grubka, K.M. Bobba, J. Heat Transfer 107, 248 (1985).

    Article  Google Scholar 

  5. C.K. Chen, M. Char, J. Math. Anal. Appl. 35, 568 (1988).

    Article  MathSciNet  Google Scholar 

  6. T. Hayat, Z. Abbas, T. Javed, Phys. Lett. A 372, 637 (2008).

    Article  ADS  MATH  Google Scholar 

  7. R. Buscall, J. Rheol. 54, 1177 (2010).

    Article  ADS  Google Scholar 

  8. I.J. Rao, K.R. Rajagopal, Acta Mech. 135, 113 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  9. P.D. Ariel, T. Hayat, S. Asghar, Acta Mech. 187, 29 (2006).

    Article  MATH  Google Scholar 

  10. T. Hayat, T. Javed, Z. Abbas, Int. J. Heat Mass Transfer. 51, 4528 (2008).

    Article  MATH  Google Scholar 

  11. A.M. Megahed, Eur. Phys. J. Plus 126, 1 (2011).

    Article  Google Scholar 

  12. R.A. Van Gorder, E. Sweet, K. Vajravelu, Commun. Nonlinear Sci. Numer. Simulat. 15, 1494 (2010).

    Article  ADS  MATH  Google Scholar 

  13. F.T. Akyildiz, H. Bellout, K. Vajravelu, R.A. Van Gorder, Nonlinear Anal. Real World Appl. 12, 2919 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Raisi, B. Ghasemi, S.M. Aminossadati, Numer. Heat Transfer Part A Appl. 59, 114 (2011).

    Article  ADS  Google Scholar 

  15. A. Noghrehabadi, R. Pourrajab, M. Ghalambaz, Int. J. Therm. Sci. 54, 253 (2012).

    Article  Google Scholar 

  16. K. Das, Comp. Fluids 64, 34 (2012).

    Article  Google Scholar 

  17. T. Fang, J. Zhang, Y. Zhong, Appl. Math. Comput. 218, 7241 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  18. M.M. Khader, Commun. Nonlinear Sci. Numer. Simulat. 16, 2535 (2011).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. M. Khader, Ahmed M. Megahed, J. King Saud Univ. - Eng. Sci. 25, 29 (2013).

    Google Scholar 

  20. N.H. Sweilam, M.M. Khader, M. Adel, J. Adv. Res. 1, 59 (2013).

    Google Scholar 

  21. N.H. Sweilam, M.M. Khader, A.M. Nagy, Comput. Appl. Math. 235, 2832 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  22. N.H. Sweilam, M.M. Khader, A.M.S. Mahdy, J. Fract. Calculus Appl. 2, 1 (2012).

    Google Scholar 

  23. J.C. Butcher, Numerical Methods for Ordinary Differential Equations (John Wiley & Sons, 2003).

  24. H. Johnston, J.G. Liu, J. Comput. Phys. 180, 120 (2002).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. G.D. Smith, Numerical Solution of Partial Differential Equations (Oxford University Press, 1965).

  26. P.M. Beckett, Int. J. Comput. Math. 14, 183 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  27. K. Vajravelu, Appl. Math. Comput. 124, 281 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  28. R. Cortell, Appl. Math. Comput. 184, 864 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  29. F.T. Akyildiz, D.A. Siginer, K. Vajravelu, J.R. Cannon, R.A. Van Gorder, Math. Methods Appl. Sci. 33, 601 (2010).

    MATH  MathSciNet  Google Scholar 

  30. R.A. Van Gorder, K. Vajravelu, Arch. Appl. Mech. 80, 1329 (2010).

    Article  ADS  MATH  Google Scholar 

  31. T.R. Mahapatra, S.K. Nandy, K. Vajravelu, R.A. Van Gorder, Arch. Appl. Mech. 81, 1087 (2011).

    Article  ADS  MATH  Google Scholar 

  32. R.A. Van Gorder, Appl. Math. Comput. 217, 8068 (2011).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Megahed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khader, M.M., Megahed, A.M. Numerical solution for boundary layer flow due to a nonlinearly stretching sheet with variable thickness and slip velocity. Eur. Phys. J. Plus 128, 100 (2013). https://doi.org/10.1140/epjp/i2013-13100-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2013-13100-7

Keywords

Navigation