Skip to main content
Log in

Heavy quark perturbative QCD fragmentation functions in the presence of hadron mass

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The dominant mechanism to produce hadronic bound states with large transverse momentum is fragmentation, that is the splitting of a high-energy parton into a hadronic state and other partons. We review the present schemes to calculate the heavy quark fragmentation functions (FFs) and derive an exact analytical expression of FF which includes most of the kinematical and dynamical properties of the process. Using the perturbative QCD, we calculate the FF for c-quark to split into S-wave D+ meson to leading order in the QCD coupling constant. Our result is compared with the current well-known phenomenological models which are obtained through a global fit to e + e data from SLAC SLC and CERN LEP1 and we also compare the FF with experimental data form BELLE and CLEO. Specifically, we study the effect of outgoing meson mass on the pQCD FF. Meson masses are responsible for the low-z threshold, where z is the scaled energy variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hirai, S. Kumano, Prog. Theor. Phys. Suppl. 186, 244 (2010).

    Article  ADS  MATH  Google Scholar 

  2. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972) (Yad. Fiz. 15.

    Google Scholar 

  3. B. Mele, P. Nason, Nucl. Phys. B 361, 626 (1991).

    Article  ADS  Google Scholar 

  4. M. Cacciari, S. Catani, Nucl. Phys. B 617, 253 (2001).

    Article  ADS  Google Scholar 

  5. Studies on fragmentation functions are listed in http://www.pv.infn.it/~radici/FFdatabase/.

  6. S. Albino, B.A. Kniehl, G. Kramer, Nucl. Phys. B 725, 181 (2005).

    Article  ADS  Google Scholar 

  7. B.A. Kniehl, G. Kramer, B. Potter, Nucl. Phys. B 582, 514 (2000).

    Article  ADS  Google Scholar 

  8. T. Kneesch, B.A. Kniehl, G. Kramer, I. Schienbein, Nucl. Phys. B 799, 34 (2008).

    Article  ADS  MATH  Google Scholar 

  9. P. Nason, C. Oleari, Nucl. Phys. B 565, 245 (2000).

    Article  ADS  Google Scholar 

  10. M. Cacciari, P. Nason, C. Oleari, JHEP 04, 006 (2006).

    Article  ADS  Google Scholar 

  11. J.C. Collins, Phys. Rev. D 58, 094002 (1998).

    Article  ADS  Google Scholar 

  12. C. Peterson, D. Schlatter, I. Schmitt, P.M. Zerwas, Phys. Rev. D 27, 105 (1983).

    Article  ADS  Google Scholar 

  13. B. Andersson, G. Gustafson, G. Ingelman, T. Sjostrand, Phys. Rep. 97, 31 (1983).

    Article  ADS  Google Scholar 

  14. B.R. Webber, Nucl. Phys. B 238, 492 (1984).

    Article  ADS  Google Scholar 

  15. J.P. Ma, Nucl. Phys. B 506, 329 (1997).

    Article  ADS  Google Scholar 

  16. E. Braaten, T.C. Yuan, Phys. Rev. Lett. 71, 1673 (1993).

    Article  ADS  Google Scholar 

  17. C.-H. Chang, Y.-Q. Chen, Phys. Lett. B 284, 127 (1992).

    Article  ADS  Google Scholar 

  18. E. Braaten, K.-m. Cheung, T.C. Yuan, Phys. Rev. D 48, 4230 (1993).

    Article  ADS  Google Scholar 

  19. D.M. Scott, Phys. Rev. D 18, 210 (1978).

    Article  ADS  Google Scholar 

  20. J.D. Bjorken, Phys. Rev. D 17, 171 (1978).

    Article  ADS  Google Scholar 

  21. M. Suzuki, Phys. Lett. B 71, 139 (1977).

    Article  ADS  Google Scholar 

  22. F. Amiri, C.-R. Ji, Phys. Lett. B 195, 593 (1987).

    Article  ADS  Google Scholar 

  23. P. Nason, B.R. Webber, Nucl. Phys. B 421, 473 (1994) 480.

    Article  ADS  Google Scholar 

  24. B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Phys. Rev. D 84, 094026 (2011).

    Article  ADS  Google Scholar 

  25. M.G. Bowler, Z. Phys. C 11, 169 (1981).

    Article  ADS  Google Scholar 

  26. Belle Collaboration (R. Seuster et al.), Phys. Rev. D 73, 032002 (2006).

    Article  ADS  Google Scholar 

  27. J. Binnewies, B.A. Kniehl, G. Kramer, Phys. Rev. D 58, 034016 (1998).

    Article  ADS  Google Scholar 

  28. M. Suzuki, Phys. Rev. D 33, 676 (1986).

    Article  ADS  Google Scholar 

  29. G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22, 2157 (1980).

    Article  ADS  Google Scholar 

  30. M.A. Gomshi Nobary, J. Phys. G 20, 65 (1994).

    Article  ADS  Google Scholar 

  31. A.D. Adamov, G.R. Goldstein, Phys. Rev. D 56, 7381 (1997).

    Article  ADS  Google Scholar 

  32. S.J. Brodsky, C.-R. Ji, Phys. Rev. Lett. 55, 2257 (1985).

    Article  ADS  Google Scholar 

  33. F. Amiri, B.C. Harms, C.-R. Ji, Phys. Rev. D 32, 2982 (1985).

    Article  ADS  Google Scholar 

  34. G. Corcella, G. Ferrera, JHEP 12, 029 (2007).

    Article  ADS  Google Scholar 

  35. S. Albino, B.A. Kniehl, G. Kramer, W. Ochs, Phys. Rev. D 73, 054020 (2006).

    Article  ADS  Google Scholar 

  36. Particle Data Group (K. Nakamura et al.), J. Phys. G 37, 075021 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mohammad Moosavi Nejad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammad Moosavi Nejad, S., Armat, A. Heavy quark perturbative QCD fragmentation functions in the presence of hadron mass. Eur. Phys. J. Plus 128, 121 (2013). https://doi.org/10.1140/epjp/i2013-13121-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2013-13121-2

Keywords

Navigation