Skip to main content
Log in

Dynamical system analysis of modified chaplygin gas in Einstein-Aether gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work we investigate the background dynamics when dark energy is coupled to dark matter with a suitable interaction in the universe described by the Einstein-Aether gravity. Dark energy in the form of modified Chaplygin gas is considered. A suitable interaction between dark energy and dark matter is considered in order to at least alleviate (if not solve) the cosmic coincidence problem. The dynamical system of equations is solved numerically and a stable scaling solution is obtained. A significant attempt towards the solution of the cosmic coincidence problem is taken. The statefinder parameters are also calculated to classify the dark energy models. Graphs and phase diagrams are drawn to study the variations of these parameters. It is also seen that the background dynamics of the modified Chaplygin gas in the Einstein-Aether gravity is completely consistent with the notion of an accelerated expansion in the late universe. Finally, it has been shown that the universe follows the power law form of expansion around the critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Perlmutter et al., Nature 391, 51 (1998).

    Article  ADS  Google Scholar 

  2. Supernova Search Team Collaboration (A.G. Riess et al.), Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  3. A.G. Riess et al., Astrophys. J. 607, 665 (2004).

    Article  ADS  Google Scholar 

  4. C. Bennet et al., Phys. Rev. Lett. 85, 2236 (2000).

    Article  ADS  Google Scholar 

  5. D.N. Spergel et al., Astrophys. J. Suppl. Ser. 170, 377 (2007).

    Article  ADS  Google Scholar 

  6. J.K. Adelman-McCarthy et al., Astrophys. J. Suppl. Ser. 175, 297 (2008).

    Article  ADS  Google Scholar 

  7. SDSS Collaboration (D.J. Eisenstein et al.), Astrophys. J. 633, 560 (2005).

    Article  ADS  Google Scholar 

  8. S. Briddle et al., Science 299, 1532 (2003).

    Article  ADS  Google Scholar 

  9. D.N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003).

    Article  ADS  Google Scholar 

  10. P.J.E. Peebles, B. Ratra, Astrophys. J. 325, L17 (1988).

    Article  ADS  Google Scholar 

  11. R.R. Caldwell, R. Dave, P.J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998).

    Article  ADS  Google Scholar 

  12. C. Armendariz - Picon, V.F. Mukhanov, P.J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000).

    Article  ADS  Google Scholar 

  13. A. Sen, JHEP 07, 065 (2002).

    Article  ADS  Google Scholar 

  14. R.R. Caldwell, Phys. Lett. B 545, 23 (2002).

    Article  ADS  Google Scholar 

  15. B. Feng, X.L. Wang, X.M. Zhang, Phys. Lett. B 607, 35 (2005).

    Article  ADS  Google Scholar 

  16. A.Y. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265 (2001).

    Article  MATH  ADS  Google Scholar 

  17. U. Debnath, A. Banerjee, S. Chakraborty, Class. Quantum Grav. 21, 5609 (2004).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. A. Cohen, D. Kaplan, A. Nelson, Phys. Rev. Lett. 82, 4971 (1999).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. V. Sahni, Y. Shtanov, JCAP 11, 014 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  20. J. Lu et al., Phys. Lett. B 662, 87 (2008).

    Article  ADS  Google Scholar 

  21. L. Dao-Jun, L. Xin-Zhou, Chin. Phys. Lett. 22, 1600 (2005).

    Article  ADS  Google Scholar 

  22. G.R. Dvali, G. Gabadadze, M. Porrati, Phys. Lett. B 484, 112 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  23. A. De Felice, T. Tsujikawa, arXiv:1002.4928 [gr-qc].

  24. S. Nojiri, S.D. Odintsov, arXiv:1011.0544 [gr-q].

  25. T. Clifton, J. Barrow, Phys. Rev. D 72, 103005 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  26. K.K. Yerzhanov, arXiv:1006.3879v1 [gr-qc] (2010).

  27. S. Nojiri, S.D. Odintsov, Phys. Lett. B 631, 1 (2005).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. I. Antoniadis, J. Rizos, K. Tamvakis, Nucl. Phys. B 415, 497 (1994).

    Article  ADS  Google Scholar 

  29. P. Horava, JHEP 03, 020 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  30. C. Brans, H. Dicke, Phys. Rev. 124, 925 (1961).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. P. Rudra, U. Debnath, R. Biswas, Astrophys. Space Sci. 339, 53 (2012).

    Article  MATH  ADS  Google Scholar 

  32. P. Rudra, Astrophys. Space Sci. 342, 579 (2012).

    Article  MATH  ADS  Google Scholar 

  33. R. Chowdhury, P. Rudra, Int. J. Theor. Phys. 52, 489 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  34. P. Rudra, C. Ranjit, S. Kundu, Astrophys. Space Sci. 347, 433 (2013).

    Article  ADS  Google Scholar 

  35. T.G. Zlosnik, P.G. Ferreira, G.D. Starkman, Phys. Rev. D 75, 044017 (2007).

    Article  ADS  Google Scholar 

  36. T.G. Zlosnik, P.G. Ferreira, G.D. Starkman, Phys. Rev. D 77, 084010 (2008).

    Article  ADS  Google Scholar 

  37. T. Jacobson, D. Mattingly, Phys. Rev. D 64, 024028 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  38. T. Jacobson, D. Mattingly, Phys. Rev. D 70, 024003 (2004).

    Article  ADS  Google Scholar 

  39. D. Garfinkle, T. Jacobson, Phys. Rev. Lett. 107, 191102 (2011).

    Article  ADS  Google Scholar 

  40. E.V. Linder, R.J. Scherrer, Phys. Rev. D 80, 023008 (2009).

    Article  ADS  Google Scholar 

  41. J.D. Barrow, Phys. Rev. D 85, 047503 (2012).

    Article  ADS  Google Scholar 

  42. J. Zuntz, T.G. Zlosnik, F. Bourliot, P.G. Ferreira, G.D. Starkman, Phys. Rev. D 81, 104015 (2010).

    Article  ADS  Google Scholar 

  43. B. Li, D. Fonseca Mota, J.D. Barrow, Phys. Rev. D 77, 024032 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  44. M. Gasperini, Class. Quantum Grav. 4, 485 (1987).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  45. M. Gasperini, Gen. Relativ. Gravit. 30, 1703 (1998).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  46. U. Debnath, arXiv:1310.2144v1 [gr-qc].

  47. X. Meng, X. Du, Phys. Lett. B 710, 493 (2012).

    Article  ADS  Google Scholar 

  48. X. Meng, X. Du, Commun. Theor. Phys. 57, 227 (2012).

    Article  MATH  ADS  Google Scholar 

  49. Z.-K. Guo, Y.-Z. Zhang, Phys. Rev. D 71, 023501 (2005).

    Article  ADS  Google Scholar 

  50. S. del Campo, R. Herrera, D. Pavon, JCAP 01, 020 (2009).

    Article  Google Scholar 

  51. J.S. Alcaniz, J.A.S. Lima, Phys. Rev. D 72, 063516 (2005).

    Article  ADS  Google Scholar 

  52. C. Feng et al., Phys. Lett. B 665, 111 (2008).

    Article  ADS  Google Scholar 

  53. T.G. Zlosnik, P.G. Ferreira, G.D. Starkman, Phys. Rev. D 75, 044017 (2007).

    Article  ADS  Google Scholar 

  54. J. Zuntz, T.G. Zlosnik, F. Bourliot, P.G. Ferreira, G.D. Starkman, Phys. Rev. D 81, 104015 (2010).

    Article  ADS  Google Scholar 

  55. S.M. Carroll, E.A. Lim, Phys. Rev. D 70, 123525 (2004) arXiv:hep-th/0407149.

    Article  ADS  Google Scholar 

  56. T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Phys. Rep. 513, (2012).

  57. S. Chakraborty, U. Debnath, C. Ranjit, Eur. Phys. J. C 72, 2101 (2012).

    Article  ADS  Google Scholar 

  58. C. Ranjit, P. Rudra, S. Kundu, Astrophys. Space Sci. 347, 423 (2013).

    Article  ADS  Google Scholar 

  59. V. Sahni et al., JETP 77, 201 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chayan Ranjit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjit, C., Rudra, P. & Kundu, S. Dynamical system analysis of modified chaplygin gas in Einstein-Aether gravity. Eur. Phys. J. Plus 129, 208 (2014). https://doi.org/10.1140/epjp/i2014-14208-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14208-x

Keywords

Navigation