Skip to main content
Log in

Anisotropic cosmologies with ghost dark energy models in f (R, T) gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this work, the generalized Quantum Chromodynamics (QCD) ghost model of dark energy in the framework of Einstein gravity is investigated. For this purpose, we use the squared sound speed \( v_{s}^{2}\) whose sign determines the stability of the model. At first, the non-interacting ghost dark energy in a Bianchi type-I (BI) background is discussed. Then the equation-of-state parameter, \( \omega_D=p_{D}/\rho_{D}\), the deceleration parameter, and the evolution equation of the generalized ghost dark energy are obtained. It is shown that the equation-of-state parameter of the ghost dark energy can cross the phantom line ( \( \omega=-1\) in some range of the parameter spaces. Then, this investigation was extended to the general scheme for modified \( f(R,T)\) gravity reconstruction from a realistic case in an anisotropic Bianchi type-I cosmology, using the dark matter and ghost dark energy. Special attention is taken into account for the case in which the function f is given by \( f(R,T)=f_{1}(R) +f_{2}(T)\). We consider a specific model which permits the standard continuity equation in this modified theory. Besides \( \Omega_{\Lambda}\) and \( \Omega\) in standard Einstein cosmology, another density parameter, \( \Omega_{\sigma}\), is expected by the anisotropy. This theory implies that if \( \Omega_{\sigma}\) is zero then it yields the FRW universe model. Interestingly enough, we find that the corresponding f (R, T) gravity of the ghost DE model can behave like phantom or quintessence of the selected models which describe the accelerated expansion of the universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. D.N. Spergel et al., Astrophys. J. Suppl. Ser. 148, 175 (2003)

    Article  ADS  Google Scholar 

  4. M. Tegmark et al., Phys. Rev. D 69, 103501 (2004)

    Article  ADS  Google Scholar 

  5. H.V. Peiris et al., Astrophys. J. Suppl. Ser. 148, 213 (2003)

    Article  ADS  Google Scholar 

  6. F.R. Urban, A.R. Zhitnitsky, Phys. Lett. B 688, 9 (2010)

    Article  ADS  Google Scholar 

  7. F.R. Urban, A.R. Zhitnitsky, Phys. Rev. D 80, 063001 (2009)

    Article  ADS  Google Scholar 

  8. F.R. Urban, A.R. Zhitnitsky, JCAP 09, 018 (2009)

    Article  ADS  Google Scholar 

  9. F.R. Urban, A.R. Zhitnitsky, Nucl. Phys. B 835, 135 (2010)

    Article  ADS  MATH  Google Scholar 

  10. N. Ohta, Phys. Lett. B 695, 41 (2011)

    Article  ADS  Google Scholar 

  11. E. Witten, Nucl. Phys. B 156, 269 (1979)

    Article  ADS  Google Scholar 

  12. G. Veneziano, Nucl. Phys. B 159, 213 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  13. C. Rosenzweig, J. Schechter, C.G. Trahern, Phys. Rev. D 21, 3388 (1980)

    Article  ADS  Google Scholar 

  14. P. Nath, R.L. Arnowitt, Phys. Rev. D 23, 473 (1981)

    Article  ADS  Google Scholar 

  15. K. Kawarabayashi, N. Ohta, Nucl. Phys. B 175, 477 (1980)

    Article  ADS  Google Scholar 

  16. K. Kawarabayashi, N. Ohta, Prog. Theor. Phys. 66, 1789 (1981)

    Article  ADS  Google Scholar 

  17. N. Ohta, Prog. Theor. Phys. 66, 1408 (1981)

    Article  ADS  MATH  Google Scholar 

  18. A.R. Zhitnitsky, Phys. Rev. D 82, 103520 (2010)

    Article  ADS  Google Scholar 

  19. B. Holdom, Phys. Lett. B 697, 351 (2011)

    Article  ADS  Google Scholar 

  20. A.R. Zhitnitsky, Phys. Rev. D 84, 124008 (2011)

    Article  ADS  Google Scholar 

  21. F. Piazza, S. Tsujikawa, JCAP 07, 004 (2004)

    Article  ADS  Google Scholar 

  22. G.F.R. Ellis, M.S. Madsen, Class. Quantum Gravity 8, 667 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. S. Nojiri, S.D. Odintsov, Phys. Rev. D 68, 123512 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Capozziello, V.F. Cardone, A. Troisi, Phys. Rev. D 71, 043503 (2005)

    Article  ADS  Google Scholar 

  25. S. Capozziello, V.F. Cardone, M. Francaviglia, Gen. Relativ. Gravit. 38, 711 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. S. Capozziello, V.F. Cardone, E. Elizalde, S. Nojiri, S.D. Odintsov, Phys. Rev. D 73, 043512 (2006)

    Article  ADS  Google Scholar 

  27. A.D. Dolgov, M. Kawasaki, Phys. Lett. B 573, 1 (2003)

    Article  ADS  MATH  Google Scholar 

  28. R. Ferraro, F. Fiorini, Phys. Rev. D 75, 08403 (2007)

    Article  MathSciNet  Google Scholar 

  29. G.R. Bengochea, R. Ferraro, Phys. Rev. D 79, 124019 (2009)

    Article  ADS  Google Scholar 

  30. E.V. Linder, Phys. Rev. D 81, 127301 (2010)

    Article  ADS  Google Scholar 

  31. T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84, 024020 (2011)

    Article  ADS  Google Scholar 

  32. M. Sharif, M. Zubair, J. Exp. Theor. Phys. 117, 248 (2013)

    Article  ADS  Google Scholar 

  33. D.R.K. Reddy, R. Santikumar, R.L. Naidu, Astrophys. Space Sci. 342, 299 (2012)

    Google Scholar 

  34. M. Sharif, M. Zubair, J. Phys. Soc. Jpn. 82, 064001 (2013)

    Article  ADS  Google Scholar 

  35. M. Sharif, M. Zubair, JCAP 03, 028 (2012)

    Article  ADS  Google Scholar 

  36. M. Jamil, D. Momeni, M. Raza, R. Myrzakulov, Eur. Phys. J. C 72, 1999 (2012)

    Article  ADS  Google Scholar 

  37. M.J.S. Houndjo, O.F. Piattella, Int. J. Mod. Phys. D 21, 1250024 (2012)

    Article  ADS  Google Scholar 

  38. M.J.S. Houndjo, Int. J. Mod. Phys. D 21, 1250003 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  39. K.S. Adhav, Astrophys. Space Sci. 339, 365 (2012)

    Article  ADS  MATH  Google Scholar 

  40. M.S. Berman, Nuovo Cimento B 74, 182 (1983)

    Article  ADS  Google Scholar 

  41. R. Chaubey, A.K. Shukla, Astrophys. Space Sci. 343, 415 (2013)

    Article  ADS  MATH  Google Scholar 

  42. O. Akarsu, T. Dereli, Int. J. Theor. Phys. 51, 612 (2012)

    Article  MATH  Google Scholar 

  43. H. Hossienkhani, A. Pasqua, Astrophys. Space. Sci. 349, 39 (2014)

    Article  ADS  Google Scholar 

  44. V. Fayaz, H. Hossienkhani, F. Felegary, Int. J. Theor. Phys. 51, 2656 (2012)

    Article  MATH  Google Scholar 

  45. V. Fayaz, H. Hossienkhani, Astrophys. Space. Sci. 343, 291 (2013)

    Article  ADS  Google Scholar 

  46. V. Fayaz, M.R. Setare, H. Hossienkhani, Can. J. Phys. 91, 153 (2013)

    Article  ADS  Google Scholar 

  47. N. Dadhich, arXiv:gr-qc/0511123 (2005)

  48. E. Ebrahimi, A. Sheykhi, Phys. Lett. B 706, 19 (2011)

    Article  ADS  Google Scholar 

  49. E. Ebrahimi, A. Sheykhi, Int. J. Mod. Phys. D 20, 2369 (2011)

    Article  ADS  MATH  Google Scholar 

  50. A. Sheykhi, M. Sadegh Movahed, E. Ebrahimi, Astrophys. Space. Sci. 339, 93 (2012)

    Article  ADS  MATH  Google Scholar 

  51. P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. R.G. Cai, Z.L. Tuo, H.B. Zhang, arXiv:1011.3212

  53. F.G. Alvarenga et al., Phys. Rev. D 87, 103526 (2013)

    Article  ADS  Google Scholar 

  54. Y. Bisabr, Phys. Rev. D 86, 044025 (2012)

    Article  ADS  Google Scholar 

  55. N.J. Poplawski, arXiv:gr-qc/0608031

  56. R. Myrzakulov, Eur. Phys. J. C 72, 2203 (2012)

    Article  ADS  Google Scholar 

  57. R. Myrzakulov, Gen. Relativ. Gravit. 44, 3059 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. R. Myrzakulov, Entropy 14, 1627 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. S.D. Odintsov, D. Saez-Gomez, Phys. Lett. B 725, 437 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  60. S. Nojiri, S.D. Odintsov, Phys. Rev. D 74, 086005 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  61. S. Nojiri, S.D. Odintsov, Phys. Rev. D 74, 086009 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  62. Y.G. Gong, A. Wang, Phys. Rev. D 75, 043520 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  63. Y.G. Gong, A. Wang, Phys. Rev. D 73, 083506 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hossienkhani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayaz, V., Hossienkhani, H., Zarei, Z. et al. Anisotropic cosmologies with ghost dark energy models in f (R, T) gravity. Eur. Phys. J. Plus 131, 22 (2016). https://doi.org/10.1140/epjp/i2016-16022-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16022-x

Keywords

Navigation