Skip to main content
Log in

Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this article, buckling behavior of nonlocal magneto-electro-elastic functionally graded (MEE-FG) beams is investigated based on a higher-order beam model. Material properties of smart nanobeam are supposed to change continuously throughout the thickness based on the power-law model. Eringen's nonlocal elasticity theory is adopted to capture the small size effects. Nonlocal governing equations of MEE-FG nanobeam are obtained employing Hamilton's principle and they are solved using the Navier solution. Numerical results are presented to indicate the effects of magnetic potential, electric voltage, nonlocal parameter and material composition on buckling behavior of MEE-FG nanobeams. Therefore, the present study makes the first attempt in analyzing the buckling responses of higher-order shear deformable (HOSD) MEE-FG nanobeams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Jiang, H. Ding, Struct. Eng. Mech. 18, 195 (2004)

    Article  Google Scholar 

  2. W.Q. Chen, K.Y. Lee, H.J. Ding, J. Sound. Vib. 279, 237 (2005)

    Article  ADS  Google Scholar 

  3. A.R. Annigeri, N. Ganesan, S. Swarnamani, J. Sound. Vib. 299, 44 (2007)

    Article  ADS  Google Scholar 

  4. A. Kumaravel, N. Ganesan, R. Sethuraman, Multidiscip. Model. Mater. Struct. 3, 461 (2007)

    Article  Google Scholar 

  5. A. Daga, N. Ganesan, K. Shankar, Int. J. Comput. Method Eng. Sci. Mech. 10, 173 (2009)

    Article  Google Scholar 

  6. M.F. Liu, T.P. Chang, J. Appl. Mech. 77, 024502 (2010)

    Article  ADS  Google Scholar 

  7. S. Razavi, A. Shooshtari, Compos. Struct. 119, 377 (2015)

    Article  Google Scholar 

  8. L. Xin, Z. Hu, Compos. Struct. 125, 96 (2015)

    Article  Google Scholar 

  9. E. Pan, F. Han, Int. J. Eng. Sci. 43, 321 (2005)

    Article  Google Scholar 

  10. D.J. Huang, H.J. Ding, W.Q. Chen, Int. J. Eng. Sci. 45, 467 (2007)

    Article  Google Scholar 

  11. C.P. Wu, Y.H. Tsai, Int. J. Eng. Sci. 45, 744 (2007)

    Article  Google Scholar 

  12. X.Y. Li, H.J. Ding, W.Q. Chen, Compos. Struct. 83, 381 (2008)

    Article  Google Scholar 

  13. S.C. Kattimani, M.C. Ray, Int. J. Mech. Sci. 199, 154 (2015)

    Article  Google Scholar 

  14. J. Sladek, V. Sladek, S. Krahulec, C.S. Chen, D.L. Young, Mech. Adv. Mater. Struct. 22, 479 (2015)

    Article  Google Scholar 

  15. A.C. Eringen, D.G.B. Edelen, Int. J. Eng. Sci. 10, 233 (1972)

    Article  Google Scholar 

  16. A.C. Eringen, Int. J. Eng. Sci. 10, 1 (1972)

    Article  Google Scholar 

  17. A.C. Eringen, Int. J. Eng. Sci. 10, 425 (1972)

    Article  Google Scholar 

  18. A.C. Eringen, J. Appl. Phys. 54, 4703 (1983)

    Article  ADS  Google Scholar 

  19. W.J. Drugan, J.R. Willis, J. Mech. Phys. Solids 44, 497 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  20. W.J. Drugan, J. Mech. Phys. Solids 48, 1359 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  21. C. Polizzotto, Int. J. Solids Struct. 38, 7359 (2001)

    Article  Google Scholar 

  22. C. Polizzotto, Boundary Element Methods for Soil-Structure Interaction (Springer Netherlands, 2003) pp. 275--296

  23. W.J. Drugan, J. Mech. Phys. Solids 51, 1745 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  24. I. Monetto, W.J. Drugan, J. Mech. Phys. Solids 52, 359 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  25. L.L. Ke, Y.S. Wang, Physica E 63, 52 (2014)

    Article  ADS  Google Scholar 

  26. L.L. Ke, Y.S. Wang, J. Yang, S. Kitipornchai, Acta Mech. Sinica 30, 516 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  27. Y.S. Li, Z.Y. Cai, S.Y. Shi, Compos. Struct. 111, 522 (2014)

    Article  Google Scholar 

  28. R. Ansari, E. Hasrati, R. Gholami, F. Sadeghi, Compos. Part B: Eng. 83, 226 (2015)

    Article  Google Scholar 

  29. B. Wu, C. Zhang, W. Chen, C. Zhang, Smart Mater. Struct. 24, 095017 (2015)

    Article  ADS  Google Scholar 

  30. M. Simşek, H.H. Yurtcu, Compos. Struct. 97, 378 (2013)

    Article  Google Scholar 

  31. O. Rahmani, A.A. Jandaghian, Appl. Phys. A 119, 1019 (2015)

    Article  ADS  Google Scholar 

  32. F. Ebrahimi, M.R. Barati, Arab. J. Sci. Eng. 40, 1 (2015)

    Article  Google Scholar 

  33. A. Zemri, M.S.A. Houari, A.A. Bousahla, A. Tounsi, Struct. Eng. Mech. 54, 693 (2015)

    Article  Google Scholar 

  34. F. Ebrahimi, M. Ghadiri, E. Salari, S.A.H. Hoseini, G.R. Shaghaghi, J. Mech. Sci. Technol. 29, 1207 (2015)

    Article  Google Scholar 

  35. F. Ebrahimi, E. Salari E., Compos. Part B: Eng. 79, 156 (2015)

    Article  Google Scholar 

  36. M.R. Barati, A.M. Zenkour, H. Shahverdi, Compos. Struct. 141, 203 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Ebrahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, F., Reza Barati, M. Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams. Eur. Phys. J. Plus 131, 238 (2016). https://doi.org/10.1140/epjp/i2016-16238-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16238-8

Navigation