Skip to main content
Log in

Critical speed and free vibration analysis of spinning 3D single-walled carbon nanotubes resting on elastic foundations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this article, the influences of critical speed on the free vibration behavior of spinning 3D single-walled carbon nanotubes (SWCNT) are investigated using modified couple stress theory (MCST). Moreover, the surrounding elastic medium of SWCNT has been considered as a model of Winkler, characterized by the spring. Taking into consideration the first-order shear deformation theory (FSDT), the rotating SWCNT is modeled and its equations of motion are derived using the Hamilton principle. The formulations include Coriolis, centrifugal and initial hoop tension effects due to rotation of the SWCNT. The accuracy of the presented model is validated by some cases in the literature. The novelty of this study is considering the effects of rotation and MCST, in addition to considering the various boundary conditions of SWCNT. The generalized differential quadrature method (GDQM) is used to discretize the model and to approximate the equation of motion. Then investigation has been made on critical speed and natural frequency of the rotating SWCNT due to the influence of initial hoop tension, material length scale parameter, constant of spring, frequency mode number, angular velocity, length-to-radius ratio, radius-to-thickness ratio and boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Eftekhari, S. Mohammadi, A.R. Khoei, Comput. Mater. Sci. 79, 736 (2013)

    Article  Google Scholar 

  2. I. Elishakoff, D. Pentaras, J. Sound Vib. 322, 652 (2009)

    Article  ADS  Google Scholar 

  3. M. Zidour, K.H. Benrahou, A. Semmah, M. Naceri, H.A. Belhadj, K. Bakhti et al., Comput. Mater. Sci. 51, 252 (2012)

    Article  Google Scholar 

  4. J. Yoon, C. Ru, A. Mioduchowski, Compos. Sci. Technol. 65, 1326 (2005)

    Article  Google Scholar 

  5. C. Rao, A. Cheetham, J. Mater. Chem. 11, 2887 (2001)

    Article  Google Scholar 

  6. C. Li, L. Chen, J. Shen, J. Mech. 31, 7 (2015)

    Article  Google Scholar 

  7. G. Hummer, J.C. Rasaiah, J.P. Noworyta, Nature 414, 188 (2001)

    Article  ADS  Google Scholar 

  8. Z. Yang, M. Nakajima, Y. Shen, T. Fukuda, Nano-gyroscope assembly using carbon nanotube based on nanorobotic manipulation, in 2011 International Symposium on Micro-NanoMechatronics and Human Science (MHS) (IEEE, 2011) pp. 309--314 DOI:10.1109/MHS.2011.6102199

  9. Q. Tu, Q. Yang, H. Wang, S. Li, Sci. Rep. 6, 26183 (2016)

    Article  ADS  Google Scholar 

  10. M. Ghadiri, N. Shafiei, H. Safarpour, Microsyst. Technol. (2016) DOI:10.1007/s00542-016-2822-6

  11. M. Ghadiri, H. SafarPour, J. Therm. Stresses (2016) DOI:10.1007/s00542-016-2822-6

  12. R.A. Toupin, Arch. Ration. Mech. Anal. 11, 385 (1962)

    Article  MathSciNet  Google Scholar 

  13. W. KoLter, Proc. K. Nederl. Akaad. van Wetensch 67, 17 (1964)

    Google Scholar 

  14. R.D. Mindlin, Arch. Ration. Mech. Anal. 16, 51 (1964)

    Article  Google Scholar 

  15. M. Asghari, M. Kahrobaiyan, M. Rahaeifard, M. Ahmadian, Arch. Appl. Mech. 81, 863 (2011)

    Article  ADS  Google Scholar 

  16. F. Yang, A. Chong, D. Lam, P. Tong, Int. J. Solids Struct. 39, 2731 (2002)

    Article  Google Scholar 

  17. S. Park, X. Gao, J. Micromech. Microeng. 16, 2355 (2006)

    Article  ADS  Google Scholar 

  18. J. Reddy, J. Mech. Phys. Solids 59, 2382 (2011)

    Article  ADS  Google Scholar 

  19. M. Shaat, F. Mahmoud, X.-L. Gao, A.F. Faheem, Int. J. Mech. Sci. 79, 31 (2014)

    Article  Google Scholar 

  20. E.M. Miandoab, H.N. Pishkenari, A. Yousefi-Koma, H. Hoorzad, Physica E 63, 223 (2014)

    Article  ADS  Google Scholar 

  21. E. Reissner, J. Appl. Mech. 12, 69 (1945)

    Google Scholar 

  22. R.D. Mindlin, J. Appl. Mech. 18, 31 (1951)

    Google Scholar 

  23. M. Torkaman-Asadi, M. Rahmanian, R. Firouz-Abadi, Compos. Struct. 126, 52 (2015)

    Article  Google Scholar 

  24. G.H. Bryan, On the beats in the vibrations of a revolving cylinder or bell, in Proceedings of the Cambridge Philosophical Society (1890) pp. 101--111

  25. R. DiTaranto, M. Lessen, J. Appl. Mech. 31, 700 (1964)

    Article  ADS  Google Scholar 

  26. A. Zohar, J. Aboudi, Int. J. Mech. Sci. 15, 269 (1973)

    Article  Google Scholar 

  27. J. Padovan, J. Sound Vib. 31, 469 (1973)

    Article  ADS  Google Scholar 

  28. J. Padovan, Int. J. Solids Struct. 11, 1367 (1975)

    Article  Google Scholar 

  29. J. Padovan, Comput. Struct. 5, 145 (1975)

    Article  Google Scholar 

  30. M. Endo, K. Hatamura, M. Sakata, O. Taniguchi, J. Sound Vib. 92, 261 (1984)

    Article  ADS  Google Scholar 

  31. T. Saito, M. Endo, J. Sound Vib. 107, 17 (1986)

    Article  ADS  Google Scholar 

  32. S. Huang, W. Soedel, J. Appl. Mech. 55, 231 (1988)

    Article  ADS  Google Scholar 

  33. S. Huang, B. Hsu, J. Sound Vib. 136, 215 (1990)

    Article  ADS  Google Scholar 

  34. T.R. Tauchert, Energy principles in structural mechanics (McGraw-Hill Companies, 1974)

  35. S. Hosseini-Hashemi, M. Ilkhani, M. Fadaee, Int. J. Mech. Sci. 76, 9 (2013)

    Article  Google Scholar 

  36. R. Bellman, J. Casti, J. Math. Anal. Appl. 34, 235 (1971)

    Article  Google Scholar 

  37. R. Bellman, B. Kashef, J. Casti, J. Comput. Phys. 10, 40 (1972)

    Article  ADS  Google Scholar 

  38. F. Tornabene, N. Fantuzzi, M. Bacciocchi, The strong formulation finite element method: stability and accuracy, in Frattura ed Integrità Strutturale (2014) p. 251

  39. F. Tornabene, N. Fantuzzi, F. Ubertini, E. Viola, Appl. Mech. Rev. 67, 020801 (2015)

    Article  ADS  Google Scholar 

  40. C. Shu, Differential Quadrature and its Application in Engineering (Springer Science & Business Media, 2012)

  41. C. Shu, B.E. Richards, Int. J. Numer. Methods Fluids 15, 791 (1992)

    Article  ADS  Google Scholar 

  42. Ö. Civalek, Eng. Struct. 26, 171 (2004)

    Article  Google Scholar 

  43. M. Ghadiri, H. Safarpour, Appl. Phys. A 122, 833 (2016)

    Article  ADS  Google Scholar 

  44. Y.T. Beni, F. Mehralian, H. Razavi, Compos. Struct. 120, 65 (2015)

    Article  Google Scholar 

  45. A. Alibeigloo, M. Shaban, Acta Mech. 224, 1415 (2013)

    Article  MathSciNet  Google Scholar 

  46. Y. Tadi Beni, F. Mehralian, H. Zeighampour, Mech. Adv. Mater. Struct. 23, 791 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Ghadiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barooti, M.M., Safarpour, H. & Ghadiri, M. Critical speed and free vibration analysis of spinning 3D single-walled carbon nanotubes resting on elastic foundations. Eur. Phys. J. Plus 132, 6 (2017). https://doi.org/10.1140/epjp/i2017-11275-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11275-5

Navigation