Skip to main content
Log in

Solitons, breathers and rogue waves for a sixth-order variable-coefficient nonlinear Schrödinger equation in an ocean or optical fiber

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Under investigation in this paper is a sixth-order variable-coefficient nonlinear Schrödinger equation in an ocean or optical fiber. Through the Darboux transformation (DT) and generalized DT, we obtain the multi-soliton solutions, breathers and rogue waves. Choosing different values of \(\alpha\)(x), \(\beta\)(x), \(\gamma\)(x) and \(\delta\)(x), which are the coefficients of the third-, fourth-, fifth- and sixth-order dispersions, respectively, we investigate their effects on those solutions, where x is the scaled propagation variable. When \(\alpha\)(x), \(\beta\)(x), \(\gamma\)(x) and \(\delta\)(x) are chosen as the linear, parabolic and periodic functions, we obtain the parabolic, cubic and quasi-periodic solitons, respectively. Head-on and overtaking interactions between the two solitons are presented, and the interactions are elastic. Besides, with certain values of the spectral parameter \(\lambda\), a shock region between the two solitons appears, and the interaction is inelastic. Interactions between two kinds of the breathers are also studied, and we find that the interaction regions are similar to those of the second-order rogue waves. Rogue waves are split into some first-order rogue waves when \(\alpha\)(x), \(\beta\)(x), \(\gamma\)(x) and \(\delta\)(x) are the periodic or odd-numbered functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Maccari, Electron. J. Theor. Phys. 3, 39 (2006)

    Google Scholar 

  2. A.R. Osborne, Nonlinear Ocean Waves and the Inverse Scattering Transform (Elsevier, Amsterdam, 2010)

  3. N.J. Zabusky, M.D. Kruskal, Phys. Rev. Lett. 15, 240 (1965)

    Article  ADS  Google Scholar 

  4. A. Porter, N.F. Smyth, J. Fluid Mech. 454, 1 (2002)

    Article  ADS  Google Scholar 

  5. D.R. Scott, D.J. Stevenson, Geophys. Res. Lett. 11, 1161 (1984)

    Article  ADS  Google Scholar 

  6. D.J. Korteweg, G. de Vries, Philos. Mag. 39, 422 (1895)

    Article  MathSciNet  Google Scholar 

  7. M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981)

  8. Q.M. Huang, Y.T. Gao, S.L. Jia, Nonlinear Dyn. (2016) DOI:10.1007/s11071-016-3209-z

  9. X.H. Zhao, B. Tian, H.M. Li, Y.J. Guo, Appl. Math. Lett. 65, 48 (2017)

    Article  MathSciNet  Google Scholar 

  10. W.Q. Hu, Y.T. Gao, S.L. Jia, Q.M. Huang, Z.Z. Lan, Eur. Phys. J. Plus 131, 390 (2016)

    Article  Google Scholar 

  11. X.H. Zhao, B. Tian, D.Y. Liu, X.Y. Wu, J. Chai, Y.J. Guo, Superlattices Microstruct. 100, 587 (2016)

    Article  Google Scholar 

  12. X.H. Zhao, B. Tian, J. Chai, X.Y. Wu, Y.J. Guo, Mod. Phys. Lett. B 30, 1650383 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  13. W.Q. Hu, Y.T. Gao, C. Zhao, Y.J. Feng, C.Q. Su, Z. Naturforsch. A 71, 1079 (2016)

    Article  ADS  Google Scholar 

  14. V.E. Zakharov, A.B. Shabat, J. Exp. Theor. Phys. 34, 62 (1972)

    ADS  Google Scholar 

  15. A. Ankiewicz, J.M. Soto-Crespo, N. Akhmediev, Phys. Rev. E 81, 046602 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  16. K.B. Dysthe, K. Trulsen, Phys. Scr. T82, 48 (1999)

    Article  ADS  Google Scholar 

  17. V.I. Kruglov, A.C. Peacock, J.D. Harvey, Phys. Rev. Lett. 90, 113902 (2003)

    Article  ADS  Google Scholar 

  18. N. Akhmediev, J.M. Soto-Crespo, A. Ankiewicz, Phys. Lett. A 373, 2137 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. D. Clamond, M. Francius, J. Grue, C. Kharif, Eur. J. Mech. B 25, 536 (2006)

    Article  Google Scholar 

  20. R. Hirota, J. Math. Phys. 14, 805 (1973)

    Article  ADS  Google Scholar 

  21. N. Sasa, J. Satsuma, J. Phys. Soc. Jpn. 60, 409 (1991)

    Article  ADS  Google Scholar 

  22. M. Lakshmanan, K. Porsezian, M. Daniel, Phys. Lett. A 133, 483 (1988)

    Article  ADS  Google Scholar 

  23. I.P. Christov, Phys. Rev. A 60, 3244 (1999)

    Article  ADS  Google Scholar 

  24. A. Ankiewicz, D.J. Kedziora, A. Chowdury, U. Bandelow, N. Akhmediev, Phys. Rev. E 93, 012206 (2016)

    Article  ADS  Google Scholar 

  25. B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, J.M. Dudley, Nat. Phys. 6, 790 (2010)

    Article  Google Scholar 

  26. R. Hirota, J. Math. Phys. 14, 805 (1973)

    Article  ADS  Google Scholar 

  27. A. Ankiewicz, J.M. Soto-Crespo, N. Akhmediev, Phys. Rev. E 81, 046602 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  28. R. Sahadevan, L. Nalinidevi, J. Nonlinear Math. Phys. 17, 379 (2010)

    Article  ADS  Google Scholar 

  29. L.J. Li, Z.W. Wu, L.H. Wang, J.S. He, Ann. Phys. 334, 198 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  30. K.J. Blow, N.J. Doran, Phys. Lett. A 107, 55 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  31. D.J. Kedziora, A. Ankiewicz, N. Akhmediev, Phys. Rev. E 88, 013207 (2013)

    Article  ADS  Google Scholar 

  32. B.L. Guo, L.M. Ling, Q.P. Liu, Phys. Rev. E 85, 026607 (2012)

    Article  ADS  Google Scholar 

  33. N. Akhmediev, A. Ankiewicz, J.M. Soto-Crespo, Phys. Rev. E 80, 026601 (2009)

    Article  ADS  Google Scholar 

  34. M. Lakshmanan, K. Porsezian, M. Daniel, Phys. Lett. A 133, 483 (1988)

    Article  ADS  Google Scholar 

  35. K. Porsezian, M. Daniel, M. Lakshmanan, J. Math. Phys. 33, 1807 (1992)

    Article  ADS  Google Scholar 

  36. M. Daniel, L. Kavitha, R. Amuda, Phys. Rev. B 59, 13774 (1999)

    Article  ADS  Google Scholar 

  37. B. Yang, W.G. Zhang, H.Q. Zhang, S.B. Pei, Phys. Scr. 88, 065004 (2013)

    Article  ADS  Google Scholar 

  38. X.L. Wang, W.G. Zhang, B.G. Zhai, H.Q. Zhang, Commun. Theor. Phys. 58, 531 (2012)

    Article  Google Scholar 

  39. A. Chowdury, D.J. Kedziora, A. Ankiewicz, N. Akhmediev, Phys. Rev. E 90, 032922 (2014)

    Article  ADS  Google Scholar 

  40. W.R. Sun, B. Tian, H.L. Zhen, Y. Sun, Nonlinear Dyn. 81, 725 (2015)

    Article  MathSciNet  Google Scholar 

  41. X. Lü, B. Tian, T. Xu, K.J. Cai, W.J. Liu, Ann. Phys. 323, 2554 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  42. G. Das, J. Sarma, Phys. Plasmas 6, 4394 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  43. X.-H. Zhao, B. Tian, Y.-J. Guo, Optik 132, 417 (2017)

    Article  Google Scholar 

  44. B. Tian, Y.T. Gao, H.W. Zhu, Phys. Lett. A 366, 223 (2007)

    Article  ADS  Google Scholar 

  45. X. Lü, M. Peng, Commun. Nonlinear Sci. Numer. Simulat. 18, 2304 (2013)

    Article  ADS  Google Scholar 

  46. M.J. Ablowitz, Nonlinear Dispersive Waves (Cambridge University Press, Cambridge, 2011)

  47. Y.S. Tao, J.S. He, Phys. Rev. E 85, 026601 (2012)

    Article  ADS  Google Scholar 

  48. B.L. Guo, L.M. Ling, Q.P. Liu, Phys. Rev. E 85, 026607 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, SL., Gao, YT., Zhao, C. et al. Solitons, breathers and rogue waves for a sixth-order variable-coefficient nonlinear Schrödinger equation in an ocean or optical fiber. Eur. Phys. J. Plus 132, 34 (2017). https://doi.org/10.1140/epjp/i2017-11318-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11318-y

Navigation