Skip to main content
Log in

DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS

  • Technical Report
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Building on the successful experience in operating the DarkSide-50 detector, the DarkSide Collaboration is going to construct DarkSide-20k, a direct WIMP search detector using a two-phase Liquid Argon Time Projection Chamber (LAr TPC) with an active (fiducial) mass of 23 t (20 t). This paper describes a preliminary design for the experiment, in which the DarkSide-20k LAr TPC is deployed within a shield/veto with a spherical Liquid Scintillator Veto (LSV) inside a cylindrical Water Cherenkov Veto (WCV). This preliminary design provides a baseline for the experiment to achieve its physics goals, while further development work will lead to the final optimization of the detector parameters and an eventual technical design. Operation of DarkSide-50 demonstrated a major reduction in the dominant 39Ar background when using argon extracted from an underground source, before applying pulse shape analysis. Data from DarkSide-50, in combination with MC simulation and analytical modeling, shows that a rejection factor for discrimination between electron and nuclear recoils of \(>3 \times 10^{9}\) is achievable. This, along with the use of the veto system and utilizing silicon photomultipliers in the LAr TPC, are the keys to unlocking the path to large LAr TPC detector masses, while maintaining an experiment in which less than \(< 0.1\) events (other than \(\nu\)-induced nuclear recoils) is expected to occur within the WIMP search region during the planned exposure. DarkSide-20k will have ultra-low backgrounds than can be measured in situ, giving sensitivity to WIMP-nucleon cross sections of \(1.2 \times 10^{-47}\) cm2 (\(1.1 \times 10^{-46}\) cm2) for WIMPs of 1 TeV/c2 (10 TeV/c2) mass, to be achieved during a 5 yr run producing an exposure of 100 t yr free from any instrumental background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Oort, Bull. Astron. Inst. Netherlands 6, 249 (1932)

    ADS  Google Scholar 

  2. F. Zwicky, Helv. Phys. Acta 6, 110 (1933)

    ADS  Google Scholar 

  3. F. Zwicky, Astrophys. J. 86, 217 (1937)

    Article  ADS  Google Scholar 

  4. S.M. Faber, J.S. Gallagher, Annu. Rev. Astron. Astrophys. 17, 135 (1979)

    Article  ADS  Google Scholar 

  5. D.N. Spergel et al., Astrophys. J. Suppl. Ser. 148, 175 (2003)

    Article  ADS  Google Scholar 

  6. D. Clowe et al., Astrophys. J. 648, L109 (2006)

    Article  ADS  Google Scholar 

  7. G. Steigman, M.S. Turner, Nucl. Phys. B 253, 375 (1985)

    Article  ADS  Google Scholar 

  8. G. Bertone, D. Hooper, J. Silk, Phys. Rep. 405, 279 (2005)

    Article  ADS  Google Scholar 

  9. P. Ramond, Phys. Rev. D 3, 2415 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  10. Y.A. Gol’fand, E.P. Likhtman, JETP Lett. 13, 323 (1971)

    ADS  Google Scholar 

  11. D.V. Volkov, V.P. Akulov, JETP Lett. 16, 438 (1972)

    ADS  Google Scholar 

  12. J. Wess, B. Zumino, Nucl. Phys. B 70, 39 (1974)

    Article  ADS  Google Scholar 

  13. P. Fayet, Nucl. Phys. B 90, 104 (1975)

    Article  ADS  Google Scholar 

  14. M. Aaboud et al., Phys. Rev. D 94, 032005 (2016)

    Article  ADS  Google Scholar 

  15. The CMS Collaboration, arXiv:1607.05764v1 (2016)

  16. P. Cushman, arXiv:1310.8327v2 (2013)

  17. J. Billard, E. Figueroa-Feliciano, L. Strigari, Phys. Rev. D 89, 023524 (2014)

    Article  ADS  Google Scholar 

  18. O. Adriani et al., Nature 458, 607 (2009)

    Article  ADS  Google Scholar 

  19. M. Aguilar et al., Phys. Rev. Lett. 113, 121102 (2014)

    Article  ADS  Google Scholar 

  20. L. Feng et al., Phys. Lett. B 728, 250 (2014)

    Article  ADS  Google Scholar 

  21. W.B. Atwood et al., Astrophys. J. 697, 1071 (2009)

    Article  ADS  Google Scholar 

  22. M. Ackermann et al., Astrophys. J. 840, 43 (2017)

    Article  ADS  Google Scholar 

  23. M. Ajello, arXiv:1511.02938v1 (2015)

  24. J. Carr, arXiv:1508.06128v1 (2015)

  25. C.-S. Chen, F.-F. Lee, G.-L. Lin, Y.-H. Lin, JCAP 10, 049 (2014)

    Article  ADS  Google Scholar 

  26. D.S. Akerib et al., Science 327, 1619 (2010)

    Article  ADS  Google Scholar 

  27. Z. Ahmed et al., Phys. Rev. D 83, 112002 (2011)

    Article  ADS  Google Scholar 

  28. R. Agnese et al., Phys. Rev. Lett. 111, 251301 (2013)

    Article  ADS  Google Scholar 

  29. R. Agnese et al., Phys. Rev. D 92, 072003 (2015)

    Article  ADS  Google Scholar 

  30. R. Agnese et al., Phys. Rev. Lett. 112, 041302 (2014)

    Article  ADS  Google Scholar 

  31. E. Armengaud et al., Phys. Rev. D 86, 051701 (2012)

    Article  ADS  Google Scholar 

  32. G. Angloher et al., Eur. Phys. J. C 72, 1971 (2012)

    Article  ADS  Google Scholar 

  33. R. Bernabei et al., Eur. Phys. J. C 56, 333 (2008)

    Article  ADS  Google Scholar 

  34. R. Bernabei et al., Eur. Phys. J. C 67, 39 (2010)

    Article  ADS  Google Scholar 

  35. R. Bernabei et al., EPJ Web of Conferences 136, 05001 (2017)

    Article  Google Scholar 

  36. S.C. Kim et al., Phys. Rev. Lett. 108, 181301 (2012)

    Article  ADS  Google Scholar 

  37. S. Archambault et al., Phys. Lett. B 682, 185 (2009)

    Article  ADS  Google Scholar 

  38. E. Behnke et al., Phys. Rev. Lett. 106, 021303 (2011)

    Article  ADS  Google Scholar 

  39. E. Behnke et al., Phys. Rev. D 90, 079902 (2014)

    Article  ADS  Google Scholar 

  40. C. Amole et al., Phys. Rev. Lett. 114, 231302 (2015)

    Article  ADS  Google Scholar 

  41. C. Amole, arXiv:1510.07754v1 (2015)

  42. C.E. Aalseth et al., Phys. Rev. Lett. 101, 251301 (2008)

    Article  ADS  Google Scholar 

  43. C.E. Aalseth et al., Phys. Rev. Lett. 106, 131301 (2011)

    Article  ADS  Google Scholar 

  44. C.E. Aalseth et al., Phys. Rev. D 88, 012002 (2013)

    Article  ADS  Google Scholar 

  45. C.E. Aalseth, arXiv:1401.3295v1 (2014)

  46. G.K. Giovanetti et al., Phys. Proc. 61, 77 (2015)

    Article  ADS  Google Scholar 

  47. G.J. Alner et al., Astropart. Phys. 28, 287 (2007)

    Article  ADS  Google Scholar 

  48. E. Aprile et al., Phys. Rev. Lett. 109, 181301 (2012)

    Article  ADS  Google Scholar 

  49. E. Aprile et al., Phys. Rev. Lett. 115, 091302 (2015)

    Article  ADS  Google Scholar 

  50. E. Aprile et al., Phys. Rev. D 94, 122001 (2016)

    Article  ADS  Google Scholar 

  51. D.S. Akerib et al., Phys. Rev. Lett. 112, 091303 (2014)

    Article  ADS  Google Scholar 

  52. D.S. Akerib et al., Phys. Rev. Lett. 116, 161301 (2016)

    Article  ADS  Google Scholar 

  53. A. Manalaysay, presentation at IDM2016 (2016)

  54. D.S. Akerib et al., Phys. Rev. Lett. 118, 021303 (2017)

    Article  ADS  Google Scholar 

  55. K. Abe et al., Phys. Lett. B 719, 78 (2013)

    Article  ADS  Google Scholar 

  56. M. Xiao et al., Sci. China Phys. Mech. Astron. 57, 2024 (2014)

    Article  ADS  Google Scholar 

  57. X. Ji, presentation at IDM2016 (2016)

  58. X. Cui, arXiv:1708.06917v2 (2017)

  59. E. Aprile et al., JCAP 2016, 027 (2016)

    Article  Google Scholar 

  60. E. Aprile, arXiv:1705.06655v2 (2017)

  61. H. Nelson, presentation at DM2014 (2014)

  62. V.A. Kudryavtsev, AIP Conf. Proc. 1672, 060003 (2015) ISSN 0094-243X

    Article  Google Scholar 

  63. E. Aprile, presentation at LNGS Sci. Comm. Apr. 2015 (2015)

  64. A. Marchionni et al., J. Phys. Conf. Ser. 308, 012006 (2011)

    Article  Google Scholar 

  65. A. Badertscher, arXiv:1307.0117v1 (2013)

  66. J. Calvo, arXiv:1505.02443v1 (2015)

  67. A. Hime, arXiv:1110.1005v1 (2011)

  68. M.G. Boulay, J. Phys. Conf. Ser. 375, 012027 (2012)

    Article  Google Scholar 

  69. P. Benetti et al., Nucl. Instrum. Methods A 574, 83 (2007)

    Article  ADS  Google Scholar 

  70. P. Benetti et al., Astropart. Phys. 28, 495 (2008)

    Article  Google Scholar 

  71. P. Agnes et al., Phys. Lett. B 743, 456 (2015)

    Article  ADS  Google Scholar 

  72. P. Agnes et al., Phys. Rev. D 93, 081101 (2016)

    Article  ADS  Google Scholar 

  73. E. Kuflik, A. Pierce, K.M. Zurek, Phys. Rev. D 81, 111701 (2010)

    Article  ADS  Google Scholar 

  74. O. Buchmueller, C. Doglioni, L.-T. Wang, Nat. Phys. 13, 217 (2017)

    Article  Google Scholar 

  75. F. Kahlhoefer, Int. J. Mod. Phys. A 32, 1730006 (2017)

    Article  ADS  Google Scholar 

  76. M.G. Boulay, presentation at New Ideas in Dark Matter 2017 (2017)

  77. S. Westerdale, PhD Thesis, Princeton University (2016)

  78. T. Alexander et al., Astropart. Phys. 49, 44 (2013)

    Article  ADS  Google Scholar 

  79. M.G. Boulay, A. Hime, Astropart. Phys. 25, 179 (2006)

    Article  ADS  Google Scholar 

  80. H. Cao et al., Phys. Rev. D 91, 092007 (2015)

    Article  ADS  Google Scholar 

  81. E.A. Bagnaschi et al., Eur. Phys. J. C 75, 1419 (2015)

    Article  Google Scholar 

  82. J. Dobson, presentation at IDM2016 (2016)

  83. D. Franco et al., JCAP 2016, 017 (2016)

    Article  Google Scholar 

  84. G. Bellini et al., Phys. Rev. D 89, 112007 (2014)

    Article  ADS  Google Scholar 

  85. G. Bellini et al., JCAP 1308, 049 (2013)

    Article  ADS  Google Scholar 

  86. A. Empl, E.V. Hungerford, R. Jasim, P. Mosteiro, JCAP 1408, 064 (2014)

    Article  ADS  Google Scholar 

  87. A. Hitachi, T. Doke, A. Mozumder, Phys. Rev. B 46, 11463 (1992)

    Article  ADS  Google Scholar 

  88. P.A. Amaudruz et al., Astropart. Phys. 85, 1 (2016)

    Article  ADS  Google Scholar 

  89. Z. Wang, L. Bao, X. Hao, Y. Ju, Rev. Sci. Instr. 85, 015116 (2014)

    Article  ADS  Google Scholar 

  90. P. Agnes et al., JINST 12, P01021 (2017)

    Article  Google Scholar 

  91. P. Agnes, arXiv:1707.05630v1 (2017)

  92. P. Agnes, arXiv:1707.09889v1 (2017)

  93. P. Agnes et al., JINST 11, P03016 (2016)

    Article  Google Scholar 

  94. P. Agnes et al., JINST 11, P12007 (2016)

    Article  Google Scholar 

  95. P. Agnes, arXiv:1611.02750v1 (2016)

  96. T. Alexander et al., Phys. Rev. D 88, 092006 (2013)

    Article  ADS  Google Scholar 

  97. F.A. Lindemann, Philos. Mag. 38, 173 (1919)

    Article  Google Scholar 

  98. H.C. Urey, F.G. Brickwedde, G.M. Murphy, Phys. Rev. 40, 1 (1932)

    Article  ADS  Google Scholar 

  99. J. de Boer, R.J. Lunbeck, Physica 14, 520 (1948)

    Article  ADS  Google Scholar 

  100. J. de Boer, Physica 14, 139 (1948)

    Article  ADS  Google Scholar 

  101. J. de Boer, A. Michels, Physica 6, 97 (1939)

    Article  ADS  Google Scholar 

  102. J. Bigeleisen, J. Chem. Phys. 34, 1485 (1961)

    Article  ADS  Google Scholar 

  103. G. Boato, G. Scoles, M.E. Vallauri, Nuovo Cimento 23, 1041 (1962)

    Article  Google Scholar 

  104. G. Boato, G. Casanova, G. Scoles, M.E. Vallauri, Nuovo Cimento 20, 87 (1961)

    Article  Google Scholar 

  105. G. Boato, G. Scoles, M.E. Vallauri, Nuovo Cimento 14, 735 (1959)

    Article  Google Scholar 

  106. G. Casanova, A. Levi, N. Terzi, Physica 30, 937 (1964)

    Article  ADS  Google Scholar 

  107. C. Casanova, R. Fieschi, N. Terzi, Nuovo Cimento 18, 837 (1960)

    Article  Google Scholar 

  108. R. Fieschi, N. Terzi, Physica 27, 453 (1961)

    Article  ADS  Google Scholar 

  109. J.N. Canongia Lopes, A.A.H. Pádua, L.P.N. Rebelo, J. Bigeleisen, J. Chem. Phys. 118, 5028 (2003)

    Article  ADS  Google Scholar 

  110. J.C.G. Calado, F.A. Dias, J.N.C. Lopes, L.P.N. Rebelo, J. Phys. Chem. B 104, 8735 (2000)

    Article  Google Scholar 

  111. W.L. McCabe, E.W. Thiele, Ind. Eng. Chem. 17, 605 (1925)

    Article  Google Scholar 

  112. A.J.V. Underwood, Ind. Eng. Chem. 41, 2844 (1949)

    Article  Google Scholar 

  113. E.R. Gilliland, Ind. Eng. Chem. 32, 1220 (1940)

    Article  Google Scholar 

  114. M.R. Fenske, Ind. Eng. Chem. 24, 482 (1932)

    Article  Google Scholar 

  115. Aspen Technology, Inc., Aspen Plus (2015)

  116. J. Xu et al., Astropart. Phys. 66, 53 (2015)

    Article  ADS  Google Scholar 

  117. H. Simgen, G. Zuzel, Appl. Radiat. Isot. 67, 922 (2009)

    Article  Google Scholar 

  118. V.N. Moieseyev, Titanium Alloys (Taylor & Francis, 2006)

  119. D.S. Akerib et al., Astropart. Phys. 62, 33 (2015)

    Article  ADS  Google Scholar 

  120. T. Petersen, Liquid Argon Maximum Convective Heat Flux versus Liquid Depth, DO EN 237, Fermi National Accelerator Laboratory (1990)

  121. R. Acciarri, arXiv:1601.05471v1 (2016)

  122. I. Ostrovskiy et al., IEEE Trans. Nucl. Sci. 62, 1825 (2015)

    Article  ADS  Google Scholar 

  123. M. D’Incecco, arXiv:1706.04220v1 (2017)

  124. C. Piemonte et al., IEEE Trans. Elec. Dev. 63, 1111 (2016)

    Article  ADS  Google Scholar 

  125. A. Ferri et al., JINST 11, P03023 (2016)

    Article  Google Scholar 

  126. F. Acerbi et al., IEEE Trans. Elec. Dev. 64, 521 (2017)

    Article  ADS  Google Scholar 

  127. C. Piemonte et al., IEEE NSS/MIC Conf. Rec. 2012, 428 (2012) ISSN 1082-3654

    Google Scholar 

  128. A. Gola, C. Piemonte, A. Tarolli, IEEE Trans. Nucl. Sci. 59, 358 (2012)

    Article  ADS  Google Scholar 

  129. F. Corsi et al., Nucl. Instrum. Methods A 572, 416 (2007)

    Article  ADS  Google Scholar 

  130. W.J. Willis, V. Radeka, Nucl. Instrum. Methods 120, 221 (1974)

    Article  ADS  Google Scholar 

  131. V. Radeka, IEEE Trans. Nucl. Sci. 21, 51 (1974)

    Article  ADS  Google Scholar 

  132. V. Radeka, S. Rescia, Nucl. Instrum. Methods A 265, 228 (1988)

    Article  ADS  Google Scholar 

  133. R.L. Chase, C. de La Taille, S. Rescia, N. Seguin, Nucl. Instrum. Methods A 330, 228 (1993)

    Article  ADS  Google Scholar 

  134. R.L. Chase, S. Rescia, IEEE Trans. Nucl. Sci. 44, 1028 (1997)

    Article  ADS  Google Scholar 

  135. M. D’Incecco, arXiv:1706.04213v1 (2017)

  136. W. Ootani, Nucl. Instrum. Methods A 732, 146 (2013)

    Article  ADS  Google Scholar 

  137. P.W. Cattaneo et al., Nucl. Instrum. Methods A 828, 191 (2016)

    Article  ADS  Google Scholar 

  138. S.O. Rice, Bell Syst. Tech. J. 23, 282 (1944)

    Article  Google Scholar 

  139. J.G. Graeme, Photodiode Amplifiers: OP AMP Solutions (McGraw Hill Professional, 1996) ISBN 9780070242470

  140. V.M. Gehman et al., Nucl. Instrum. Methods A 654, 116 (2011)

    Article  ADS  Google Scholar 

  141. A. Wright, P. Mosteiro, B. Loer, F.P. Calaprice, Nucl. Instrum. Methods A 644, 18 (2011)

    Article  ADS  Google Scholar 

  142. C. Buck, M. Yeh, J. Phys. G 43, 093001 (2016)

    Article  ADS  Google Scholar 

  143. G. Bentoumi et al., AECL Nucl. Rev. 1, 57 (2012)

    Article  Google Scholar 

  144. Z. Chang et al., Nucl. Instrum. Methods A 769, 112 (2015)

    Article  ADS  Google Scholar 

  145. C.D. Bass et al., Appl. Radiat. Isot. 77, 130 (2013)

    Article  Google Scholar 

  146. B.R. Kim et al., J. Kor. Phys. Soc. 66, 768 (2015)

    Article  ADS  Google Scholar 

  147. B.R. Kim et al., Phys. Scr. 90, 055302 (2015)

    Article  ADS  Google Scholar 

  148. J. Ashenfelter et al., JINST 10, P11004 (2015)

    Article  Google Scholar 

  149. F. An et al., J. Phys. G 43, 030401 (2016)

    Article  ADS  Google Scholar 

  150. G. Alimonti et al., Nucl. Instrum. Methods A 600, 568 (2009)

    Article  ADS  Google Scholar 

  151. S. Aiello et al., IEEE Trans. Nucl. Sci. 59, 1259 (2012)

    Article  ADS  Google Scholar 

  152. W.H. Lippincott et al., Phys. Rev. C 81, 045803 (2010)

    Article  ADS  Google Scholar 

  153. L.W. Kastens, S.B. Cahn, A. Manzur, D.N. McKinsey, Phys. Rev. C 80, 045809 (2009)

    Article  ADS  Google Scholar 

  154. D. Vénos, O. Dragoun, A. Spalek, M. Vobecký, Nucl. Instrum. Methods A 560, 352 (2006)

    Article  ADS  Google Scholar 

  155. D. Vénos, A. Spalek, O. Lebeda, M. Fišer, Appl. Radiat. Isot. 63, 323 (2005)

    Article  Google Scholar 

  156. S.-C. Wu, Nucl. Data Sheets 92, 893 (2001)

    Article  ADS  Google Scholar 

  157. Thermo Fisher Scientific, Inc., Thermoscientific API 120 Neutron Generators (2015)

  158. D.L. Chichester, M. Lemchak, J.D. Simpson, Nucl. Instrum. Methods B 241, 753 (2005)

    Article  ADS  Google Scholar 

  159. J. Liu et al., Nucl. Instrum. Methods A 797, 260 (2015)

    Article  ADS  Google Scholar 

  160. I. Ostrovskiy, Measuring the neutrino mixing angle theta-13 with the double chooz far detector (University of Alabama Libraries, 2012)

  161. R.F. Lang et al., JINST 11, P04004 (2016)

    Article  Google Scholar 

  162. A.S. Chepurnov, M.B. Gromov, A.F. Shamarin, J. Phys. Conf. Ser. 675, 012008 (2016)

    Article  Google Scholar 

  163. J.S. Kapustinsky et al., Nucl. Instrum. Methods A 241, 612 (1985)

    Article  ADS  Google Scholar 

  164. I.A. Belolaptikov et al., Astropart. Phys. 7, 263 (1997)

    Article  ADS  Google Scholar 

  165. D.N. Spergel, Phys. Rev. D 37, 1353 (1988)

    Article  ADS  Google Scholar 

  166. P. Gondolo, Phys. Rev. D 66, 103513 (2002)

    Article  ADS  Google Scholar 

  167. B. Morgan, A.M. Green, N.J.C. Spooner, Phys. Rev. D 71, 103507 (2005)

    Article  ADS  Google Scholar 

  168. K. Freese, P. Gondolo, H.J. Newberg, Phys. Rev. D 71, 043516 (2005)

    Article  ADS  Google Scholar 

  169. G. Jaffé, Ann. Phys. 393, 977 (1929)

    Article  Google Scholar 

  170. G. Jaffé, Ann. Phys. 347, 303 (1913)

    Article  Google Scholar 

  171. G. Jaffé, Radium 10, 126 (1913)

    Article  Google Scholar 

  172. D.W. Swan, Proc. Phys. Soc. 85, 1297 (1965)

    Article  ADS  Google Scholar 

  173. A. Hitachi, J.A. LaVerne, T. Doke, Phys. Rev. B 46, 540 (1992)

    Article  ADS  Google Scholar 

  174. B. Rossi et al., JINST 11, C02041 (2016)

    Article  Google Scholar 

  175. J. Anderson et al., J. Phys. Conf. Ser. 664, 082050 (2015)

    Article  Google Scholar 

  176. D.S. Leonard et al., Nucl. Instrum. Methods A 591, 490 (2008)

    Article  ADS  Google Scholar 

  177. A. Aguilar-Arevalo et al., JINST 10, P08014 (2015)

    Article  Google Scholar 

  178. B.D. LaFerriere, T.C. Maiti, I.J. Arnquist, E.W. Hoppe, Nucl. Instrum. Methods A 775, 93 (2015)

    Article  ADS  Google Scholar 

  179. J.B. Albert et al., Phys. Rev. C 92, 015503 (2015)

    Article  ADS  Google Scholar 

  180. A. Seifert et al., J. Radioanal. Nucl. Chem. 296, 915 (2012)

    Article  Google Scholar 

  181. G. Zuzel et al., Nucl. Instrum. Methods A 498, 240 (2003)

    Article  ADS  Google Scholar 

  182. V. Álvarez et al., JINST 8, T01002 (2013)

    ADS  Google Scholar 

  183. E.W. Hoppe et al., Nucl. Instrum. Methods A 579, 486 (2007)

    Article  ADS  Google Scholar 

  184. J. Argyriades et al., Nucl. Instrum. Methods A 622, 120 (2010)

    Article  ADS  Google Scholar 

  185. M. Misiaszek et al., Appl. Radiat. Isot. 81, 146 (2013)

    Article  Google Scholar 

  186. G. Zuzel, M. Wójcik, Nucl. Instrum. Methods A 676, 140 (2012)

    Article  ADS  Google Scholar 

  187. J.W. Grate, presentation at LRT2015 (2015)

  188. J. Benziger et al., Nucl. Instrum. Methods A 582, 509 (2007)

    Article  ADS  Google Scholar 

  189. B. Aharmim et al., Phys. Rev. Lett. 101, 111301 (2008)

    Article  ADS  Google Scholar 

  190. A. Nachab, AIP Conf. Proc. 897, 35 (2007) ISSN 0094-243X

    Article  ADS  Google Scholar 

  191. Y. Takeuchi et al., Nucl. Instrum. Methods A 421, 334 (1999)

    Article  ADS  Google Scholar 

  192. J. Kiko, Nucl. Instrum. Methods A 460, 272 (2001)

    Article  ADS  Google Scholar 

  193. H. Simgen, G. Heusser, M. Laubenstein, G. Zuzel, Int. J. Mod. Phys. A 29, 1442009 (2014)

    Article  ADS  Google Scholar 

  194. M. Agostini et al., Eur. Phys. J. C 74, 2764 (2014)

    Article  ADS  Google Scholar 

  195. N. Abgrall et al., Adv. High En. Phys. 2014, 365432:1 (2014)

    Google Scholar 

  196. G. Bellini et al., Nature 512, 383 (2014)

    Article  ADS  Google Scholar 

  197. H.M. Araújo et al., Astropart. Phys. 35, 495 (2012)

    Article  ADS  Google Scholar 

  198. E. Aprile et al., Astropart. Phys. 35, 43 (2011)

    Article  ADS  Google Scholar 

  199. E. Aprile et al., J. Phys. G 40, 115201 (2013)

    Article  ADS  Google Scholar 

  200. J.C. Loach et al., AIP Conf. Proc. 1549, 8 (2013) ISSN 0094-243X

    Article  ADS  Google Scholar 

  201. J. Street et al., AIP Conf. Proc. 1672, 150004 (2015) ISSN 0094-243X

    Article  Google Scholar 

  202. M. Wójcik, W. Wlazło, G. Zuzel, G. Heusser, Nucl. Instrum. Methods A 449, 158 (2000)

    Article  ADS  Google Scholar 

  203. J. Boger et al., Nucl. Instrum. Methods A 449, 172 (2000)

    Article  ADS  Google Scholar 

  204. C.J. Martoff, P.D. Lewin, Comp. Phys. Comm. 72, 96 (1992)

    Article  ADS  Google Scholar 

  205. J.J. Back, Y.A. Ramachers, Nucl. Instrum. Methods A 586, 286 (2008)

    Article  ADS  Google Scholar 

  206. A. Empl, E.V. Hungerford, arXiv:1407.6628v2 (2014)

  207. D. Mei, Z.B. Yin, L.C. Stonehill, A. Hime, Astropart. Phys. 30, 12 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Renshaw.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aalseth, C.E., Acerbi, F., Agnes, P. et al. DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS. Eur. Phys. J. Plus 133, 131 (2018). https://doi.org/10.1140/epjp/i2018-11973-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11973-4

Navigation