Skip to main content
Log in

Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

To answer some issues raised about the concept of fractional differentiation and integration based on the exponential and Mittag-Leffler laws, we present, in this paper, fundamental differences between the power law, exponential decay, Mittag-Leffler law and their possible applications in nature. We demonstrate the failure of the semi-group principle in modeling real-world problems. We use natural phenomena to illustrate the importance of non-commutative and non-associative operators under which the Caputo-Fabrizio and Atangana-Baleanu fractional operators fall. We present statistical properties of generator for each fractional derivative, including Riemann-Liouville, Caputo-Fabrizio and Atangana-Baleanu ones. The Atangana-Baleanu and Caputo-Fabrizio fractional derivatives show crossover properties for the mean-square displacement, while the Riemann-Liouville is scale invariant. Their probability distributions are also a Gaussian to non-Gaussian crossover, with the difference that the Caputo Fabrizio kernel has a steady state between the transition. Only the Atangana-Baleanu kernel is a crossover for the waiting time distribution from stretched exponential to power law. A new criterion was suggested, namely the Atangana-Gómez fractional bracket, that helps describe the energy needed by a fractional derivative to characterize a 2-pletic manifold. Based on these properties, we classified fractional derivatives in three categories: weak, mild and strong fractional differential and integral operators. We presented some applications of fractional differential operators to describe real-world problems and we proved, with numerical simulations, that the Riemann-Liouville power-law derivative provides a description of real-world problems with much additional information, that can be seen as noise or error due to specific memory properties of its power-law kernel. The Caputo-Fabrizio derivative is less noisy while the Atangana-Baleanu fractional derivative provides an excellent description, due to its Mittag-Leffler memory, able to distinguish between dynamical systems taking place at different scales without steady state. The study suggests that the properties of associativity and commutativity or the semi-group principle are just irrelevant in fractional calculus. Properties of classical derivatives were established for the ordinary calculus with no memory effect and it is a failure of mathematical investigation to attempt to describe more complex natural phenomena using the same notions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Kantor, The Scientific Evolution of Psychology (Principia Press, Chicago, 1963)

  2. P. Green, Alexander of Macedon (University of California Press Ltd., Oxford, 1991)

  3. R. Sorabji (Editor), Aristotle Transformed (Bloomsburg Academic, London, 1990)

  4. J. Filonik, Athenian Impiety Trials: A Reappraisal (Dike, 2013)

  5. A.G. Kurosh, Mat. Sbornik. 20, 237 (1947)

    MathSciNet  Google Scholar 

  6. D. Eisenhardt, Learn Mem. 21, 534 (2014)

    Article  Google Scholar 

  7. I. Yaglom, Complex Numbers in Geometry (Academic Press, N.Y., 1968) pp. 195-219, translated by E. Primrose from 1963 Russian original, appendix: Non-Euclidean geometries in the plane and complex numbers

  8. J. Briggs, Fractals: The Patterns of Chaos (Thames and Hudson, London, 1992)

  9. T. Vicsek, Fractal Growth Phenomena (World Scientific, Singapore/New Jersey, 1992)

  10. H. Takayasu, Fractals in the Physical Sciences (Manchester University Press, Manchester, 1990)

  11. R.D. Knight, J. Geom. 83, 137 (2005)

    Article  MathSciNet  Google Scholar 

  12. W. Blaschke, Differentialgeometrie der Kreise und Kugeln, in Vorlesungen über Differentialgeometrie, Grundlehren der Mathematischen Wissenschaften (Springer, Berlin, 1929)

  13. M.D. Ortigueira, J.A.T. Machado, J. Comput. Phys. 293, 4 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. V.E. Tarasov, Nonlinear Sci. Numer. Simul. 18, 2945 (2013)

    Article  Google Scholar 

  15. G.B. Folland, Advanced Calculus (Prentice Hall, 2002)

  16. M. Caputo, Geophys. J. Int. 13, 529 (1967)

    Article  ADS  Google Scholar 

  17. A. Atangana, B. Dumitru, Therm. Sci. 20, 763 (2016)

    Article  Google Scholar 

  18. M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 2, 1 (2016)

    Article  Google Scholar 

  19. C.G. Galizia, S.L. McIlwrath, R. Menzel, Cell Tissue Res. 295, 383 (1999)

    Article  Google Scholar 

  20. R.D. Schafer, An Introduction to Nonassociative Algebras, Vol. 22 (Academic Press, 1966)

  21. S. Okubo, Introduction to Octonion and Other Non-associative Algebras in Physics (Cambridge University Press, 1995)

  22. E.T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, with an Introduction to the Problem of Three Bodies, 4th ed. (Dover Publications, New York, 1937)

  23. R. Broucke, Astrophys. Space Sci. 72, 33 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Biswas, V. Shapiro, Graph. Models 66, 133 (2004)

    Article  Google Scholar 

  25. F. Cantrijn, A. Ibort, M. De-Leon, J. Aust. Math. Soc. A 66, 303 (1999)

    Article  Google Scholar 

  26. J. Baez, A. Hoffnung, C. Rogers, Commun. Math. Phys. 293, 701 (2010)

    Article  ADS  Google Scholar 

  27. K.C. Louden, Compiler Construction: Principles and Practice (1997)

  28. M. Pitkänen, Prespacetime J. 7, 66 (2016)

    Google Scholar 

  29. H. Couclelis, N. Gale, Geogr. Ann. Ser. B Human Geogr. 68, 1 (1986)

    Article  Google Scholar 

  30. M. Chaichian, P. Presnajder, A. Tureanu, Phys. Rev. Lett. 94, 151602 (2005)

    Article  ADS  Google Scholar 

  31. S. Doplicher, K. Fredenhagen, J.E. Roberts, Commun. Math. Phys. 172, 187 (1995)

    Article  ADS  Google Scholar 

  32. M.R. Douglas, N.A. Nekrasov, Rev. Mod. Phys. 73, 977 (2001)

    Article  ADS  Google Scholar 

  33. V. Moretti, Rev. Math. Phys. 15, 1171 (2003)

    Article  MathSciNet  Google Scholar 

  34. W. Heisenberg, Z. Phys. 43, 172 (1927)

    Article  ADS  Google Scholar 

  35. L.A. Rozema, A. Darabi, D.H. Mahler, A. Hayat, Y. Soudagar, A.M. Steinberg, Phys. Rev. Lett. 109, 100404 (2012)

    Article  ADS  Google Scholar 

  36. D.J. Gross, F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973)

    Article  ADS  Google Scholar 

  37. R. Gorenflo, J. Loutchko, Y. Luchko, Fract. Calc. Appl. Anal. 5, 491 (2002)

    MathSciNet  Google Scholar 

  38. R.N. Pillai, Ann. Inst. Stat. Math. 42, 157 (1990)

    Article  Google Scholar 

  39. C.S. Kumar, B.U. Nair, J. Stat. Appl. 6, 23 (2011)

    Google Scholar 

  40. C.S. Kumar, B.U. Nair, OPSEARCH 52, 86 (2015)

    Article  MathSciNet  Google Scholar 

  41. A.M. Mathai, P. Moschopoulos, J. Stat. Appl. Prob. 1, 15 (2012)

    Article  Google Scholar 

  42. J. Hristov, Derivatives with non-singular kernels from the Caputo-Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models, in Frontiers in Fractional Calculus (Bentham Science Publishers, 2017) pp. 235--295

  43. J. Hristov, Electrical Circuits of Non-integer Order: Introduction to an Emerging Interdisciplinary Area with Examples, in Analysis and Simulation of Electrical and Computer Systems (Springer, 2018) pp. 251--273

  44. A. Atangana, I. Koca, Chaos, Solitons Fractals 89, 447 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  45. J. Hristov, Therm. Sci. 21, 827 (2016)

    Article  Google Scholar 

  46. B.S.T. Alkahtani, Chaos, Solitons Fractals 89, 547 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  47. V.F. Morales-Delgado, J.F. Gómez-Aguilar, M.A. Taneco-Hernández, Eur. Phys. J. Plus 132, 527 (2017)

    Article  Google Scholar 

  48. J.F. Gómez-Aguilar, J. Math. Sociol. 41, 172 (2017)

    Article  MathSciNet  Google Scholar 

  49. J.F. Gómez-Aguilar, Chaos, Solitons Fractals 95, 179 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  50. A.A. Tateishi, H.V. Ribeiro, E.K. Lenzi, Front. Phys. 5, 52 (2017)

    Article  Google Scholar 

  51. I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Academic Press, New York, 1998)

  52. L. Changpin, T. Chunxing, Comput. Math. Appl. 58, 1573 (2009)

    Article  MathSciNet  Google Scholar 

  53. K. Diethelm, N.J. Ford, A.D. Freed, Numer. Algorithms 36, 31 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  54. M. Caputo, M. Fabricio, Progr. Fract. Differ. Appl. 1, 73 (2015)

    Google Scholar 

  55. A. Atangana, J.J. Nieto, Adv. Mech. Eng. 7, 1 (2015)

    Google Scholar 

  56. J.F. Gómez-Aguilar, Numer. Methods Part. Differ. Equ. (2017) https://doi.org/10.1002/num.22219

  57. A.M.A. El-Sayed, A.E.M. El-Mesiry, H.A.A. El-Saka, Appl. Math. Lett. 20, 817 (2007)

    Article  MathSciNet  Google Scholar 

  58. J.G. Lu, Chaos, Solitons Fractals 26, 1125 (2005)

    Article  ADS  Google Scholar 

  59. D.R. Willé, C.T. Baker, Appl. Numer. Math. 9, 223 (1992)

    Article  Google Scholar 

  60. V. Daftardar-Gejji, Y. Sukale, S. Bhalekar, Fract. Calc. Appl. Anal. 18, 400 (2015)

    Article  MathSciNet  Google Scholar 

  61. A. Atangana, J.F. Gómez-Aguilar, Numer. Methods Part. Differ. Equ. (2017) https://doi.org/10.1002/num.22195

  62. A. Atangana, E.F. Doungmo-Goufo, Therm. Sci. 19, 231 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdon Atangana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atangana, A., Gómez-Aguilar, J.F. Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus 133, 166 (2018). https://doi.org/10.1140/epjp/i2018-12021-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12021-3

Navigation