Skip to main content
Log in

A numerical study of the effect of the magnetic field on turbulent fluid flow, heat transfer and entropy generation of hybrid nanofluid in a trapezoidal enclosure

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The purpose of this research is the numerical study of turbulent flow field, heat transfer and entropy generation of a Cuo-MWCNT-oil hybrid nanofluid in a trapezoidal enclosure under the influence of a magnetic field in natural convection. The enclosure side walls are insulated, the top wall is cold and the bottom one is hot. The study is done on Rayleigh numbers 107 to 1010, Hartmann numbers 0 to 500, and volume fractions 0 to 1 percent of nanoparticles. The governing equations were solved numerically using a finite volume method and SIMPLER algorithm. According to numerical results, it was observed that the application and increase of a magnetic field increases the flow tendency to vortices. In all Rayleigh numbers and for all the studied Hartmann numbers, the stream function and average Nusselt number reduced by increasing the volume fraction of nanoparticles. It was also observed that for smaller Rayleigh numbers, increasing the Hartmann number will have a more tangible effect on reducing the average Nusselt number. By increasing the Rayleigh number in all the studied Hartmann numbers and volume fractions, the total entropy generated increased. The optimal mode for each Rayleigh number in terms of the minimum value of entropy generation is the least volume fraction and the most Hartmann number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Togun, M.R. Safaei, Rad Sadri, S.N. Kazi, A. Badarudin, K. Hooman, E. Sadeghinezhad, Appl. Math. Comput. 239, 153 (2014)

    MathSciNet  Google Scholar 

  2. M.A. Ahmeda, M.Z. Yusoff, K.C. Ng, N.H. Shuaib, Case Stud. Therm. Eng. 6, 212 (2015)

    Article  Google Scholar 

  3. V. Bianco, F. Scarpa, L.A. Tagliafico, Renew. Energy 116, 9 (2018)

    Article  Google Scholar 

  4. R. Davarnejad, M. Jamshidzadeh, Eng. Sci. Technol. 18, 536 (2014)

    Google Scholar 

  5. R. Choudhary, S. Subudhi, Appl. Therm. Eng. 108, 1095 (2016)

    Article  Google Scholar 

  6. M. Siavashi, M. Jamali, Appl. Therm. Eng. 100, 1149 (2016)

    Article  Google Scholar 

  7. H. Ghodsinezhad, M. Sharifpur, J.P. Meyer, Int. Commun. Heat Mass Transfer 76, 1120 (2016)

    Article  Google Scholar 

  8. S. Mosayebidorcheha, M. Sheikholeslami, M. Hatamid, D.D. Ganji, Particuology 13, 20 (2016)

    Google Scholar 

  9. Y. Varol, Int. Commun. Heat Mass Transfer 37, 1350 (2010)

    Article  Google Scholar 

  10. H. Saleh, R. Roslan, I. Hashim, Int. J. Therm. Sci. 54, 194 (2011)

    Google Scholar 

  11. R. Nasrin, P. Salma, Int. Commun. Heat Mass Transfer 39, 270 (2012)

    Article  Google Scholar 

  12. A. Aghaei, H. Khorasanizadeh, G. Sheikhzadeh, M. Abbaszadeh, J. Magn. & Magn. Mater. 403, 133 (2016)

    Article  ADS  Google Scholar 

  13. A. Arefmanesh, A. Aghaei, H. Ehteram, Appl. Math. Modell. 40, 815 (2016)

    Article  Google Scholar 

  14. T.L. Bergman, A.S. Lavine, F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, fourth edition (Wiley, 2016)

  15. B.E. Launder, D.B. Spalding, Lectures in Mathematical Models of Turbulence (Academic Press, London, 1972)

  16. A.H. Mahmoudi, I. Pop, M. Shahi, F. Talebi, Comput. Fluids 72, 46 (2011)

    Article  Google Scholar 

  17. L. Syam Sundar, K.V. Sharma, Manoj K. Singh, A.C.M. Sousa, Renew. Sustain. Energy Rev. 68, 185 (2017)

    Article  Google Scholar 

  18. J. Buongiorno, J. Heat Transfer 128, 240 (2006)

    Article  Google Scholar 

  19. A. Aghaei, H. Khorasanizadeh, G.A. Sheikhzadeh, Heat Mass Transf. 54, 151 (2018)

    Article  ADS  Google Scholar 

  20. S.V. Patankar, Numerical Heat Transfer and Fluid Flow (HemispHere, McGraw-Hill, Washington DC, 1980)

  21. M.S. Bohn, A.T. Kirkpatrick, D.A. Olson, J. Heat Transf. 106, 339 (1984)

    Article  Google Scholar 

  22. G. Barakos, E. Mitsoulis, D. Assimacopoulos, Int. J. Numer. Methods Fluids 18, 695 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Aghaei.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghaei, A., Khorasanizadeh, H. & Sheikhzadeh, G.A. A numerical study of the effect of the magnetic field on turbulent fluid flow, heat transfer and entropy generation of hybrid nanofluid in a trapezoidal enclosure. Eur. Phys. J. Plus 134, 310 (2019). https://doi.org/10.1140/epjp/i2019-12681-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12681-3

Navigation