Skip to main content
Log in

Analytic solution of multi-dimensional Schrödinger equation in hot and dense QCD media using the SUSYQM method

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The N-radial Schrödinger equation is analytically solved by using the SUSYQM method, in which the heavy-quarkonia potential is introduced at finite temperature and baryon chemical potential. The energy eigenvalue is calculated in the N-dimensional space. The obtained results show that the binding energy strongly decreases with increasing temperature and is slightly sensitive for changing baryon chemical potential up to 0.6GeV at higher values of temperatures. We employed the nonperturbative corrections to the leading-order of the Debye mass at finite baryon chemical potential. We found that the binding energy is more dissociated when the nonperturbative corrections are included with the leading-order term of the Debye mass in both hot and dense media. A comparison with other works, such as the lattice parameterized of the Debye mass is discussed; thus, the present potential with the SUSYQM method provides satisfying results for the description of the dissociation of binding energy for heavy quarkonia in hot and dense media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten, Nucl. Phys. B 188, 513 (1981)

    Article  ADS  Google Scholar 

  2. F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  3. H. Motavali, A. Rostami, Prog. Electromagn. Res. C 1, 131 (2008)

    Article  Google Scholar 

  4. A.N. Ikot, S.E. Etuk, B.H. Yazarloo, S. Zarrinkamar, H. Hassanabadi, Few-Body Syst. 56, 41 (2015)

    Article  ADS  Google Scholar 

  5. A.N. Ikot, H. Hassanabdi, H.P. Obong, Y.E. Chad-Umoren, C.N. Isonguyo, B.H. Yazarloo, Chin. Phys. B 23, 120303 (2014)

    Article  Google Scholar 

  6. A.N. Ikot, H. Hassanabdi, E. Maghsoodi, S. Zarrinkamar, N. Salehi, Phys. Part. Nucl. Lett. 11, 443 (2014)

    Article  Google Scholar 

  7. A.N. Ikot, H.P. Obong, H. Hassanabadi, N. Salehi, O.S. Thomas, Ind. J. Phys. 89, 649 (2015)

    Article  Google Scholar 

  8. C.S. Jia, J.W. Dai, L.H. Zhang, J.Y. Liu, X.L. Peng, Phys. Lett. A 379, 132 (2015)

    ADS  Google Scholar 

  9. A. Suprami, C. Cari, B.N. Pratiwi, J. Phys. Conf. Ser. 710, 012026 (2016)

    Article  Google Scholar 

  10. C.S. Jia, T. Chen, S. He, Phys. Lett. A 377, 682 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. U.S. Okorie, A.N. Ikot, M.C. Onyeaju, E.O. Chukwuocha, Rev. Mex. Fis. 64, 608 (2018)

    Article  Google Scholar 

  12. E.M. Khokha, M. Abu-Shady, T.A. Abdel-Karim, Int. J. Theor. Appl. Math. 2, 86 (2016)

    Google Scholar 

  13. A.N. Ikot, O.A. Awoga, A.D. Antia, Chin. Phys. B 22, 020304 (2013)

    Article  Google Scholar 

  14. A. Arda, R. Sever, Commun. Theor. Phys. 58, 27 (2012)

    Article  ADS  Google Scholar 

  15. M. Abu-Shady, J. Egypt. Math. Soc. 25, 86 (2017)

    Article  MathSciNet  Google Scholar 

  16. A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics (Birkhauser, Basel, 1988)

  17. A.N. Ikot, O.A. Awoga, H. Hassanabadi, E. Maghsoodi, Commun. Theor. Phys. 6, 113 (2014)

    Google Scholar 

  18. N.V. Maksimenko, S.M. Kuchin, Rus. J. Phys. 54, 57 (2011)

    Article  Google Scholar 

  19. H. Ciftci, R.L. Hall, N. Saad, J. Phys. A 36, 11807 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  20. F.M. Fernandez, J. Phys. A 37, 6173 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  21. S.H. Dong, Factorization Method in Quantum Mechanics (Springer, Dordreht, 2007)

  22. A. Tas, O. Aydogdu, M. Salti, J. Kor. Phys. Soc. 70, 897 (2017)

    Article  Google Scholar 

  23. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965)

  24. P. Faccioli, C. Loureno, M. Arajo, V. Knnz, I. Krtschmer, J. Seixas, Phys. Lett. B 773, 476 (2017)

    Article  ADS  Google Scholar 

  25. T. Song, J. Aichelin, E. Bratkovskaya, Phys. Rev. C 96, 014907 (2017)

    Article  ADS  Google Scholar 

  26. ATLAS Collaboration (S.T. Araya et al.), Nucl. Part. Phys. Proc. 393, 289 (2017)

    Google Scholar 

  27. PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 84, 054912 (2011)

    Article  Google Scholar 

  28. M. Asakawa, T. Hatsuda, Phys. Rev. Lett. 92, 012001 (2004)

    Article  ADS  Google Scholar 

  29. S. Datta, F. Karsch, P. Petreczky, I. Wetzorke, Phys. Rev. D 69, 094507 (2004)

    Article  ADS  Google Scholar 

  30. T. Umeda, K. Nomura, H. Matsufuru, Eur. Phys. J. C 39, 9 (2005)

    Article  ADS  Google Scholar 

  31. H. Iida, T. Doi, N. Ishii, H. Suganuma, K. Tsumura, Phys. Rev. D 74, 074502 (2006)

    Article  ADS  Google Scholar 

  32. A. Mocsy, P. Petreczky, Phys. Rev. D 77, 014501 (2008)

    Article  ADS  Google Scholar 

  33. S. Digal, P. Petreczky, H. Satz, Phys. Lett. B 514, 57 (2001)

    Article  ADS  Google Scholar 

  34. E.V. Shuryak, I. Zahed, Phys. Rev. D 70, 054507 (2004)

    Article  ADS  Google Scholar 

  35. W.M. Alberico, A. Beraudo, A. De Pace, A. Molinari, Phys. Rev. D 72, 114011 (2005)

    Article  ADS  Google Scholar 

  36. C.Y. Wong, H.W. Crater, Phys. Rev. D 75, 034505 (2007)

    Article  ADS  Google Scholar 

  37. W.M. Alberico, A. Beraudo, A.D. Pace, A. Molinari, Phys. Rev. D 75, 074009 (2007)

    Article  ADS  Google Scholar 

  38. V. Agotiya, V. Chandra, B.K. Patra, Phys. Rev. C 80, 025210 (2009)

    Article  ADS  Google Scholar 

  39. L. Thakur, N. Haque, U. Kakade, B.K. Patra, Phys. Rev. D 88, 054022 (2013)

    Article  ADS  Google Scholar 

  40. L. Thakur, U. Kakade, B.K. Patra, Phys. Rev. D 89, 094020 (2014)

    Article  ADS  Google Scholar 

  41. U. Kakade, B.K. Patra, L. Thakur, Int. J. Mod. Phys. A 30, 1550043 (2015)

    Article  ADS  Google Scholar 

  42. V.K. Agotiya, V. Chandra, M.Y. Jamal, I. Nilima, Phys. Rev. D 94, 094006 (2016)

    Article  ADS  Google Scholar 

  43. L. Thakur, N. Haque, H. Mishra, Phys. Rev. D 95, 036014 (2017)

    Article  ADS  Google Scholar 

  44. M.Y. Jamal, I. Nilima, V. Chandra, V.K. Agotiyab, Phys. Rev. D 97, 094033 (2018)

    Article  ADS  Google Scholar 

  45. M. Abu-Shady, T.A. Abdel-Karim, E.M. Khokha, Adv. High Energy Phys. 2018, 7356843 (2018)

    Google Scholar 

  46. M. Abu-Shady, E.M. Khokha, Adv. High Energy Phys. 2018, 032041 (2018)

    Google Scholar 

  47. U. Kakade, B.K. Patra, Phys. Rev. C 92, 024901 (2015)

    Article  ADS  Google Scholar 

  48. M. Abu-Shady, H.M. Mansour, A.I. Ahmadov, Adv. High Energy Phys. 2019, 4785615 (2019)

    Article  Google Scholar 

  49. T. Das, A. Arda, Adv. High Energy Phys. 2015, 137038 (2015)

    Article  Google Scholar 

  50. M. Abu-Shady, Inter. J. Appl. Math. Theor. Phys. 2, 16 (2016)

    Google Scholar 

  51. M. Moring, S. Ejir, O. Kaczmarek, F. Karsch, E. Laermann, PoSLAT 2005, 193 (2006)

    Google Scholar 

  52. C. Hong, L. Bou, H. Ze-jun, Chin. Phys. Lett. 15, 787 (1998)

    Article  ADS  Google Scholar 

  53. P.K. Srivastava, S.K. Tiwari, C.P. Singh, Phys. Rev. D 82, 014023 (2010)

    Article  ADS  Google Scholar 

  54. D. Blaschke, O. Kaczmarek, E. Laermann, V. Yudichev, Eur. Phys. J. C 43, 81 (2005)

    Article  ADS  Google Scholar 

  55. P.K. Srivastava, O.S.K. Chaturvedi, L. Thakur, Eur. Phys. J. C 78, 440 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Ikot.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-Shady, M., Ikot, A.N. Analytic solution of multi-dimensional Schrödinger equation in hot and dense QCD media using the SUSYQM method. Eur. Phys. J. Plus 134, 321 (2019). https://doi.org/10.1140/epjp/i2019-12685-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12685-y

Navigation