Skip to main content
Log in

Reconstruction paradigm in a class of extended teleparallel theories using Tsallis holographic dark energy

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present paper investigates the exact form of generic functions present in different torsion-based modified gravitational frameworks using reconstruction technique. For this purpose, we consider flat FRW geometry filled with the matter contents as perfect fluid. For the reconstruction paradigm, we take the Tsallis holographic dark energy model into account and explore the forms of generic functions present in the torsional frameworks of f(T) theory, non-minimally interacted torsion matter coupling, f(TG) theory with G as Gauss–Bonnet term and \(f(T,{\mathcal {T}})\) gravity, where \({\mathcal {T}}\) denotes the energy–momentum tensor trace. We also computed the reconstructed form of generic functions by taking Tsallis holographic dark energy with power law and logarithmic corrections for all these cases. To check the cosmological viability and stability of the reconstructed models, we discuss some interesting cosmic parameters like dark energy EoS, deceleration parameter and the speed of sound graphically. It is concluded that all these parameters support accelerating cosmic expansion in later time and a stable state of cosmos (except few cases) which is also compatible with the recent observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. S. Perlmutter et al., Nature 391, 51 (1998)

    ADS  Google Scholar 

  2. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    ADS  Google Scholar 

  3. A.G. Riess et al., Astrophys. J. 659, 98 (2007)

    ADS  Google Scholar 

  4. S. Nojiri, S.D. Odintsov, Int. J. Geom. Methods Mod. Phys. 4, 115 (2007)

    MathSciNet  Google Scholar 

  5. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011)

    ADS  MathSciNet  Google Scholar 

  6. S. Capozziello, V. Faraoni, Beyond Einstein Gravity (Springer, Dordrecht, 2010)

    MATH  Google Scholar 

  7. S. Capozziello, M.D. Laurentis, Phys. Rep. 509, 167 (2011)

    ADS  MathSciNet  Google Scholar 

  8. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys. Sp. Sci. 342, 155 (2012)

    ADS  Google Scholar 

  9. A. Joyce, B. Jain, J. Khoury, M. Trodden, Phys. Rep. 568, 1 (2015)

    ADS  MathSciNet  Google Scholar 

  10. K. Koyama, Rep. Prog. Phys. 79, 046902 (2016)

    ADS  Google Scholar 

  11. K. Bamba, S.D. Odintsov, Symmetry 7, 220 (2015)

    MathSciNet  Google Scholar 

  12. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rep. 692, 1 (2017)

    ADS  MathSciNet  Google Scholar 

  13. K. Bamba, S. Nojiri, S.D. Odintsov, J Cos Astropart Phys 0810, 045 (2008)

    ADS  Google Scholar 

  14. M. Zubair, M. Zeeshan, S.S. Hasan, V.K. Oikonomou, Symmetry 10, 463 (2018)

    Google Scholar 

  15. F.G. Alvarenga, Phys. Rev. D 87, 103526 (2013)

    ADS  Google Scholar 

  16. M. Zubair, Hina Azmat, I. Noureen, Int. J. Mod. Phys. D 27, 1850047 (2018)

    ADS  Google Scholar 

  17. K. Bamba, S.D. Odintsov, L. Sebastiani, S. Zerbini, Eur. Phys. J. C 67, 295 (2010)

    ADS  Google Scholar 

  18. M. Zubair, M. Zeeshan, Astrophys. Sp. Sci. 363, 248 (2018)

    ADS  Google Scholar 

  19. M. Zubair, M. Zeeshan, S. Waheed, Mod. Phys. Lett. A 33, 1950253 (2019)

    Google Scholar 

  20. A.D. Felice, T. Suyama, T. Tanaka, Phys. Rev. D 83, 104035 (2011)

    ADS  Google Scholar 

  21. Z. Haghani et al., Phys. Rev. D 88, 044023 (2013)

    ADS  Google Scholar 

  22. M. Sharif, M. Zubair, J. High Energy Phys. 12, 079 (2013)

    ADS  Google Scholar 

  23. H. Weyl, Gravitation und Elektrizitat. Sitzungsber. Preuss. Akad. Wissensch. 1918, 465 (1918)

    Google Scholar 

  24. L.O. Raifeartaigh, The Dawning of Gauge Theory (Princeton University Press, Princeton, 1998)

    Google Scholar 

  25. L.O. Raifeartaigh, N. Straumann, Rev. Mod. Phys. 72, 1 (2000)

    ADS  Google Scholar 

  26. A. Einstein, Auf die Riemann-Metrik und den Fern-Parallelismus gegründete einheitliche Feldtheorie. Math. Ann. 102 (1930) 685. For an English translation, together with three previous essays, see A. Unzicker, T. Case, Unified field theory based on Riemannian metrics and distant parallelism. arXiv:0503046/physics

    ADS  MathSciNet  MATH  Google Scholar 

  27. T. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys) 1921, 966 (1921)

  28. O.Z. Klein, Physics 37, 895 (1926)

    Google Scholar 

  29. E. Cartan, Ann. Sci. Éc. Norm. Super. 40, 325 (1923)

    Google Scholar 

  30. E. Cartan, Ann. Sci. Éc. Norm. Super. 41, 1 (1924)

    Google Scholar 

  31. C. Møller, K. Dan. Vidensk. Selsk. Mat. Fys. Skr. 1, 10 (1961)

    Google Scholar 

  32. C. Møller, K. Dan. Vidensk. Selsk. Mat. Fys. Skr. 89, 13 (1978)

    Google Scholar 

  33. R. Aldrovandi, J.G. Pereira, Teleparallel Gravity: An Introduction. Fundamental Theories of Physics, vol. 173 (Springer, Dodrecht, 2013)

    MATH  Google Scholar 

  34. J.W. Maluf, Ann. Phys. 525, 339 (2013). (arXiv:1303.3897)

    MathSciNet  Google Scholar 

  35. G.R. Bengochea, R. Ferraro, Phys. Rev. D 79, 124019 (2009)

    ADS  Google Scholar 

  36. R. Ferraro, F. Fiorini, Phys. Rev. D 75, 084031 (2007)

    ADS  MathSciNet  Google Scholar 

  37. E.V. Linder, Phys. Rev. D 81, 127301 (2010)

    ADS  Google Scholar 

  38. K. Karami, A. Abdolmaleki, J. Cosmo. Astropart. Phys. 4, 007 (2012)

    ADS  Google Scholar 

  39. C.G. Bohmer, T. Harko, F.S.N. Lobo, Phys. Rev. D 85, 044033 (2012)

    ADS  Google Scholar 

  40. P. Wu, H. Yu, Eur. Phys. J. C 71, 1552 (2011)

    ADS  Google Scholar 

  41. A. Aviles, A. Bravetti, S. Capozziello, O. Luongo, Phys. Rev. D 87, 064025 (2013)

    ADS  Google Scholar 

  42. M. Zubair, Int. J. Mod. Phys. D 25, 1650057 (2016)

    ADS  Google Scholar 

  43. M. Zubair, G. Abbas, Astrophys. Sp. Sci. 361, 27 (2016)

    ADS  Google Scholar 

  44. G. Kofinas, E.N. Saridakis, Phys. Rev. D 90, 084044 (2014)

    ADS  Google Scholar 

  45. G. Kofinas, G. Leon, E.N. Saridakis, Class. Quantum Gravity 31, 175011 (2014)

    ADS  Google Scholar 

  46. M. Zubair, A. Jawad, Astrophys. Sp. Sci. 360, 11 (2015)

    ADS  Google Scholar 

  47. S. Bahamonde, C.G. Bohmer, Eur. Phys. J. C 76, 578 (2016)

    ADS  Google Scholar 

  48. S. Waheed, M. Zubair, Astrophys. Sp. Sci. 359, 14 (2015)

    Google Scholar 

  49. G. Mustafa, G. Abbas, T. Xia, Chin. J. Phys. 60, 362 (2019)

    Google Scholar 

  50. T. Harko, F.S.N. Lobo, G. Otalora, E.N. Saridakis, Phys. Rev. D 89, 124036 (2014)

    ADS  Google Scholar 

  51. M. Zubair, S. Waheed, Astrophys. Sp. Sci. 355, 361 (2015)

    ADS  Google Scholar 

  52. S. Carloni et al., Phys. Rev. D 93, 024034 (2016)

    ADS  MathSciNet  Google Scholar 

  53. T. Azizi, N. Borhani, Adv. High Energy Phys. 2017, 6839050 (2017)

    Google Scholar 

  54. S. Bahamonde, C.G. Böhmer, M. Wright, Phys. Rev. D 92, 104042 (2015)

    ADS  MathSciNet  Google Scholar 

  55. S. Bahamonde, M. Zubair, G. Abbas, Phys. Dark Universe 19, 78 (2018)

    ADS  Google Scholar 

  56. Bahamonde, S., Camci, U. and Capozziello, S.: Class. Quantum Gravity (2019) (to appear)

  57. M. Zubair, Saira Waheed, M.Atif Fayyaz, Iftikhar Ahmad, Eur. Phys. J. Plus 133, 452 (2018)

    Google Scholar 

  58. G. Otalora, E.N. Saridakis, Phys. Rev. D 94, 084021 (2016)

    ADS  MathSciNet  Google Scholar 

  59. S. Waheed, M. Zubair, Eur. Phys. J. C 79, 333 (2019)

    ADS  Google Scholar 

  60. B. Li, T.P. Sotiriou, J.D. Barrow, Phys. Rev. D 83, 064035 (2011)

    ADS  Google Scholar 

  61. M. Krssak, E.N. Saridakis, Class. Quantum Gravity 33, 115009 (2016)

    ADS  Google Scholar 

  62. S. Bahamonde, C.G. Böhmer, M. Krssak, Phys. Lett. B 775, 37 (2017)

    ADS  MathSciNet  Google Scholar 

  63. N. Tamanini, C.G. Boehmer, Phys. Rev. D 86, 044009 (2012)

    ADS  Google Scholar 

  64. A.G. Cohen, D.B. Kaplan, A.E. Nelson, Phys. Rev. Lett. 82, 4971 (1999)

    ADS  MathSciNet  Google Scholar 

  65. M. Li, Phys. Lett. B. 603, 1 (2004)

    ADS  Google Scholar 

  66. M. Li et al., J. Cosmo. Astropart. Phys. 12, 014 (2009)

    ADS  Google Scholar 

  67. M. Li et al., J. Cosmo. Astropart. Phys. 06, 036 (2009)

    ADS  Google Scholar 

  68. J.D. Bekenstein, Phys. Rev. D 49, 1912 (1994)

    ADS  Google Scholar 

  69. S.W. Hawking, Phys. Rev. D 13, 191 (1976)

    ADS  Google Scholar 

  70. Y. Gong, Phys. Rev. D 70, 064029 (2004)

    ADS  Google Scholar 

  71. E. Elizalde et al., Phys. Rev. D 71, 103504 (2005)

    ADS  Google Scholar 

  72. B. Wang, E. Abdalla, R.K. Su, Phys. Lett. B 611, 21 (2005)

    ADS  Google Scholar 

  73. B. Guberina, R. Horvat, H. Nikolic, Phys. Lett. B 636, 80 (2006)

    ADS  Google Scholar 

  74. X. Zhang, Phys. Rev. D 74, 103505 (2006)

    ADS  Google Scholar 

  75. L. Xu, J. Cosmo. Astropart. Phys. 09, 016 (2009)

    ADS  Google Scholar 

  76. M. Jamil, M.U. Farooq, Int. J. Theor. Phys. 49, 42 (2010)

    Google Scholar 

  77. A. Sheykhi, Phys. Lett. B 682, 329 (2010)

    ADS  Google Scholar 

  78. A. Sheykhi, Class. Quantum Gravity 27, 025007 (2010)

    ADS  Google Scholar 

  79. K. Karami, A. Abdolmaleki, Phys. Scr. 81, 055901 (2010)

    ADS  Google Scholar 

  80. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    ADS  Google Scholar 

  81. C. Tsallis, L.J.L. Citro, Eur. Phys. J. C 73, 2487 (2013)

    ADS  Google Scholar 

  82. M. Tavayef, A. Sheykhi, K. Bamba, H. Moradpour, Phys. Lett. B 781, 195 (2018)

    ADS  Google Scholar 

  83. M. Sharif, S. Saba, Symmetry 11, 92 (2019)

    Google Scholar 

  84. Ghaffari, S. et al. arXiv:1908.10602v1

  85. A.A. Aly, Eur. Phys. J. Plus 134, 335 (2019)

    Google Scholar 

  86. A.A. Aly, Adv. Astron. 2019, 8138067 (2019)

    ADS  Google Scholar 

  87. M.A. Zadeh, A. Sheykhi, H. Moradpour, Gen. Relat. Gravity 51, 12 (2019)

    ADS  Google Scholar 

  88. S. Ghaffari et al., Eur. Phys. J. C 78, 706 (2018)

    ADS  Google Scholar 

  89. E.N. Saridakis et al., JCAP 12, 012 (2018)

    ADS  Google Scholar 

  90. S. Ghaffari et al., Phys. Dark Universe 23, 100246 (2019)

    ADS  Google Scholar 

  91. S. Nojiri, S.D. Odintsov, Phys. Rev. D 74, 086005 (2006)

    ADS  Google Scholar 

  92. S. Nojiri, S.D. Odintsov, J. Phys. Conf. Ser. 66, 012005 (2007)

    Google Scholar 

  93. K. Karami, M.S. Khaledian, JHEP 03, 086 (2011)

    ADS  Google Scholar 

  94. E. Elizalde, R. Myrzakulov, V.V. Obukhov, D. Saez-Gomez, Class. Quantum Gravity 27, 9 (2010)

    Google Scholar 

  95. S. Nojiri, S.D. Odintsov, Phys. Lett. B 631, 1 (2005)

    ADS  MathSciNet  Google Scholar 

  96. M.J.S. Houndjo, O.F. Piattella, Int. J. Mod. Phys. D 21, 1250024 (2012)

    ADS  Google Scholar 

  97. M. Sharif, M. Zubair, J. Phys. Soc. Jpn. 82, 064001 (2013)

    ADS  Google Scholar 

  98. M.H. Daouda, M.E. Rodrigues, M.J.S. Houndjo, Eur. Phys. J. C 72, 1893 (2012)

    ADS  Google Scholar 

  99. K. Bamba, R. Myrzakulov, S. Nojiri, S.D. Odintsov, Phy. Rev. D 85, 104036 (2012)

    ADS  Google Scholar 

  100. K. Karami, A. Abdolmaleki, Res. Astron. Astrophys. 13, 757 (2013)

    ADS  Google Scholar 

  101. K. Karami, S. Asadzadeh, A. Abdolmaleki, Z. Safari, Phys. Rev. D 88, 084034 (2013)

    ADS  Google Scholar 

  102. M. Gonzalez-Espinozaa, G. Otalorab, J. Saavedra, N. Videla, Eur. Phys. J. C 78, 799 (2018)

    ADS  Google Scholar 

  103. G. Kofinas, E.N. Saridakis, Phys. Rev. D 90, 084045 (2014)

    ADS  Google Scholar 

  104. T. Harko, F.S.N. Lobo, G. Otalora, E.N. Saridakis, J. Cosmo. Astropart. Phys. 12, 021 (2014)

    ADS  Google Scholar 

  105. I.G. Salako, S. Chattopadhyay, Astrophys. Sp. Sci. 358, 1 (2015)

    Google Scholar 

  106. D. Sáez-Gomez, C.S. Carvalho, F.S.N. Lobo, I. Tereno, Phys. Rev. D 94, 024034 (2016)

    ADS  MathSciNet  Google Scholar 

  107. G. Hinshaw et al., Astrophys. J. Suppl. Ser. 208, 19 (2013)

    ADS  Google Scholar 

  108. P.A.R. Ade et al., Astron. Astrophys. 571, A16 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saira Waheed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waheed, S. Reconstruction paradigm in a class of extended teleparallel theories using Tsallis holographic dark energy. Eur. Phys. J. Plus 135, 11 (2020). https://doi.org/10.1140/epjp/s13360-019-00028-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-019-00028-9

Navigation