Skip to main content
Log in

Vibration and buckling characteristics of nonlocal beam placed in a magnetic field embedded in Winkler–Pasternak elastic foundation using a new refined beam theory: an analytical approach

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this article, a new refined beam theory, namely one variable first-order shear deformation theory, has been employed to study the vibration and buckling characteristics of nonlocal beam. The beam is exposed to an axial magnetic field and embedded in Winkler–Pasternak foundation. The von Kármán hypothesis along with Hamilton’s principle has been implemented to derive the governing equations for both the vibration and buckling studies, and closed-form solutions are obtained for simply supported beam using the Navier’s approach. Further, a parametric study has been conducted to explore the impacts of small-scale parameter, Winkler modulus, shear modulus and magnetic field intensity on natural frequencies and critical buckling loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991)

    ADS  Google Scholar 

  2. A.R. Juárez, E.C. Anota, H.H. Cocoletzi, J.S. Ramírez, M. Castro, Fuller. Nanotub. Car. N. 25, 716 (2017)

    Google Scholar 

  3. S. Iijima, T. Ichihashi, Nature 363, 603 (1993)

    ADS  Google Scholar 

  4. T. Murmu, M.A. Mc Carthy, S. Adhikari, Sound Vib. 331, 5069 (2012)

    ADS  Google Scholar 

  5. K. Kiani, Int. J. Mech. Sci. 87, 179 (2014)

    Google Scholar 

  6. K. Kiani, J. Phys. Chem. Solids 75, 15 (2014)

    ADS  Google Scholar 

  7. U. Güven, Compos. Struct. 114, 92 (2014)

    Google Scholar 

  8. P. Ponnusamy, A. Amuthalakshmi, Procedia Mater. Sci. 10, 243 (2015)

    Google Scholar 

  9. D.P. Zhang, Y. Lei, Z.B. Shen, Int. J. Mech. Sci. 118, 219 (2016)

    Google Scholar 

  10. M. Hosseini, M. Sadeghi-Goughari, Appl. Math. Model. 40, 2560 (2016)

    MathSciNet  Google Scholar 

  11. T.-P. Chang, Compos. Part B-Eng. 114, 69 (2017)

    Google Scholar 

  12. K. Kiani, Comput. Math Appl. 75, 3849 (2018)

    MathSciNet  Google Scholar 

  13. Y.-X. Zhen, S.-L. Wen, Y. Tang, Physica E 105, 116 (2019)

    ADS  Google Scholar 

  14. S.C. Pradhan, G.K. Reddy, Comput. Mater. Sci. 50, 1052 (2011)

    Google Scholar 

  15. H. Zeighampour, Y. Tadi Beni, I. Karimipour, Microfluid. Nanofluid. 21, 85 (2017)

    Google Scholar 

  16. S. Arghavan, A.V. Singh, J. Sound Vib. 330, 3102 (2011)

    ADS  Google Scholar 

  17. Y.Z. Wang, F.M. Li, Mech. Res. Commun. 60, 45 (2014)

    Google Scholar 

  18. M. Rahmanian, M.A. Torkaman-Asadi, R.D. Firouz-Abadi, M.A. Kouchakzadeh, Physica B Condens. Matter. 484, 83 (2016)

    ADS  Google Scholar 

  19. R. Fernandes, S. El-Borgi, S.M. Mousavi, J.N. Reddy, A. Mechmoum, Physica E 88, 18 (2017)

    ADS  Google Scholar 

  20. M. Malikan, V.B. Nguyen, F. Tornabene, Eng. Sci. Technol. Int J. 21, 778 (2018)

    Google Scholar 

  21. M. Malikan, Sh Dastjerdi, Int. J. Eng. Appl. Sci. 10, 21 (2018)

    Google Scholar 

  22. M. Malikan, J. Appl. Comput. Mech. 5, 103 (2019)

    Google Scholar 

  23. Y.-Z. Wang, Y.-S. Wang, L.-L. Ke, Physica E 83, 195 (2016)

    ADS  Google Scholar 

  24. A. Benzair, A. Tounsi, A. Besseghier, H. Heireche, N. Moulay, L. Boumia, J. Phys, D Appl. Phys. 41, 225404 (2008)

    ADS  Google Scholar 

  25. Y.M. Fu, J.W. Hong, X.Q. Wang, J. Sound Vib. 296, 746 (2006)

    ADS  Google Scholar 

  26. J. Jiang, L. Wang, Y. Zhang, Int. J. Mech. Sci. 122, 156 (2017)

    Google Scholar 

  27. M. Malikan, R. Dimitri, F. Tornabene, Compos. Part B Eng. 158, 198 (2019)

    Google Scholar 

  28. R. Ansari, M. FaghihShojaei, V. Mohammadi, R. Gholami, H. Rouhi, ZAMM J. Appl. Math. Mech. 95, 1 (2014)

    Google Scholar 

  29. R. Ansari, A. Arjangpay, Physica E 63, 283 (2014)

    ADS  Google Scholar 

  30. S.K. Jena, S. Chakraverty, Front. Built Environ. 4, 63 (2018)

    Google Scholar 

  31. S. Chakraverty, S.K. Jena, Curved Layer. Struct. 5, 260 (2018)

    Google Scholar 

  32. S.K. Jena, S. Chakraverty, F. Tornabene, Mater. Res. Exp. 6, 085051 (2019)

    Google Scholar 

  33. S.K. Jena, S. Chakraverty, Curved Layer. Struct. 5, 201 (2018)

    Google Scholar 

  34. S.K. Jena, S. Chakraverty, R.M. Jena, F. Tornabene, Mater. Res. Exp. 6, 055016 (2019)

    Google Scholar 

  35. S.K. Jena, S. Chakraverty, Curved Layer. Struct. 6, 68 (2019)

    Google Scholar 

  36. S.K. Jena, S. Chakraverty, F. Tornabene, Mater. Res. Exp. 6, 0850f2 (2019)

    Google Scholar 

  37. R.M. Jena, S. Chakraverty, S.K. Jena, J. Appl. Comput. Mech. 5, 355 (2019)

    Google Scholar 

  38. S.K. Jena, S. Chakraverty, Int. J. Comput. Mater. Sci. Eng. 7, 1850020 (2018)

    Google Scholar 

  39. S.K. Jena, S. Chakraverty, F. Tornabene, Nanomaterials 9, 1326 (2019)

    Google Scholar 

  40. S.K. Jena, S. Chakraverty, Curved Layer. Struct. 6, 132 (2019)

    Google Scholar 

  41. S.K. Jena, S. Chakraverty, R.M. Jena, J. Braz. Soc. Mech. Sci. Eng. 41, 436 (2019)

    Google Scholar 

  42. M. Malikan, V.B. Nguyen, R. Dimitri, F. Tornabene, Mater. Res. Exp. 6, 075041 (2019)

    Google Scholar 

  43. O. Civalek, C. Demir, Asian. J. Civil Eng. 12, 651 (2011)

    Google Scholar 

  44. L. Li, Y. Hu, X. Li, Int. J. Mech. Sci. 115, 135 (2016)

    Google Scholar 

  45. R. Barretta, M. Čanadija, F.M. de Sciarra, Arch. Appl. Mech. 86, 483 (2016)

    ADS  Google Scholar 

  46. K.G. Eptaimeros, C.C. Koutsoumaris, G.J. Tsamasphyros, Int. J. Mech. Sci. 115, 68 (2016)

    Google Scholar 

  47. O. Rahmani, V. Refaeinejad, S.A.H. Hosseini, Steel Compos. Struct. 23, 339 (2017)

    Google Scholar 

  48. B. Akgöz, Ö. Civalek, Compos. Part B Eng. 129, 77 (2017)

    Google Scholar 

  49. K. Mercan, O. Civalek, Compos. Part B 114, 34 (2017)

    Google Scholar 

  50. Ç. Demir, O. Civalek, Int. J. Eng. Sci. 121, 14 (2017)

    Google Scholar 

  51. C. Demir, O. Civalek, Compos. Struct. 168, 872 (2017)

    Google Scholar 

  52. A.M. Zenkour, Eur. Phys. J. Plus 133, 196 (2018)

    Google Scholar 

  53. H.M. Numanoglu, B. Akgöz, O. Civalek, Int. J. Eng. Sci. 130, 33 (2018)

    Google Scholar 

  54. O. Rahmani, M. Shokrnia, H. Golmohammadi, S.A.H. Hosseini, Eur. Phys. J. Plus 133, 42 (2018)

    Google Scholar 

  55. M. Dehghan, F. Ebrahimi, Eur. Phys. J. Plus 133, 466 (2018)

    Google Scholar 

  56. V.K. Upadhyayula, S. Deng, M.C. Mitchell, G.B. Smith, Sci. Total Environ. 408, 1 (2009)

    ADS  Google Scholar 

  57. F. Yu, J. Chen, L. Chen, J. Huai, W. Gong, Z. Yuan, J. Wang, J. Ma, J. Colloid Interface Sci. 378, 175 (2012)

    ADS  Google Scholar 

  58. J.D. Kraus, Electromagnetics (McGraw Hill, USA, 1984)

    MATH  Google Scholar 

  59. F. Ebrahimi, M.R. Barati, Appl. Phys. A 123, 81 (2017)

    ADS  Google Scholar 

  60. F. Ebrahimi, M. Karimiasl, V. Mahesh, Adv. Nano Res. 7, 221 (2019)

    Google Scholar 

  61. A.C. Eringen, Int. J. Eng. Sci. 10, 1 (1972)

    Google Scholar 

  62. C.M. Wang, Y.Y. Zhang, X.Q. He, Nanotechnology 18, 105401 (2007)

    ADS  Google Scholar 

  63. F. Mehralian, Y. TadiBeni, M. KarimiZeverdejani, Phys. B 514, 61 (2017)

    ADS  Google Scholar 

Download references

Acknowledgement

The first two authors acknowledge to Defence Research & Development Organization (DRDO), New Delhi, India (Sanction Code: DG/TM/ERIPR/GIA/17-18/0129/020), for the funding to carry out the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chakraverty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, S.K., Chakraverty, S. & Malikan, M. Vibration and buckling characteristics of nonlocal beam placed in a magnetic field embedded in Winkler–Pasternak elastic foundation using a new refined beam theory: an analytical approach. Eur. Phys. J. Plus 135, 164 (2020). https://doi.org/10.1140/epjp/s13360-020-00176-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00176-3

Navigation