Skip to main content

Advertisement

Log in

A stochastic computational intelligent solver for numerical treatment of mosquito dispersal model in a heterogeneous environment

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, the design of stochastic computational intelligent solver is presented for the solution of mathematical model representing the dynamics of mosquito dispersal in a heterogeneous environment by feedforward artificial neural networks (FFANNs) trained with genetic algorithms (GAs) aided with sequential quadratic programming (SQP), i.e., FFANN-GASQP. In the scheme FFANN-GASQP, the formulation of fitness function in mean square error sense with continuous mapping-based differential equation models of FFANNs for the mosquito dispersal system and training of these networks are accomplished by integrated competency of GA and SQP. The exactness, reliability and stability of the designed FFANN-GASQP approach are established through comparative studies with Adams numerical results for both single and multiple runs. Outcomes of statistical assessments are used to validate the accuracy and convergence of the designed FFANN-GASQP scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P.W. Gething, A.P. Patil, D.L. Smith, C.A. Guerra, I.R. Elyazar, G.L. Johnston, A.J. Tatem, S.I. Hay, A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar. J. 10(1), 378 (2011)

    Google Scholar 

  2. S.T. Stoddard, A.C. Morrison, G.M. Vazquez-Prokopec, V.P. Soldan, T.J. Kochel, U. Kitron, J.P. Elder, T.W. Scott, The role of human movement in the transmission of vector-borne pathogens. PLoS Negl Trop Dis 3(7), e481 (2009)

    Google Scholar 

  3. A.J. Tatem, D.J. Rogers, S.I. Hay, Estimating the malaria risk of African mosquito movement by air travel. Malar. J. 5(1), 57 (2006)

    Google Scholar 

  4. A. Le Menach, F.E. McKenzie, A. Flahault, D.L. Smith, The unexpected importance of mosquito oviposition behaviour for malaria: non-productive larval habitats can be sources for malaria transmission. Malar. J. 4(1), 23 (2005)

    Google Scholar 

  5. R. Ross, An address ON THE LOGICAL BASIS OF THE SANITARY POLICY OF MOSQUITO REDUCTION: delivered at the Section of Preventive Medicine of the International Congress of Arts and Science, Universal Exposition, St. Louis, September, 1904. Br. Med. J. 1(2315), 1025 (1905)

    Google Scholar 

  6. L. Manga, E. Fondjo, P. Carnevale, V. Robert, Importance of low dispersion of Anopheles gambiae (Diptera: Culicidae) on malaria transmission in hilly towns in south Cameroon. J. Med. Entomol. 30(5), 936–938 (1993)

    Google Scholar 

  7. J. Cano, M.Á. Descalzo, M. Moreno, Z. Chen, S. Nzambo, L. Bobuakasi, J.N. Buatiche, M. Ondo, F. Micha, A. Benito, Spatial variability in the density, distribution and vectorial capacity of anopheline species in a high transmission village (Equatorial Guinea). Malar. J. 5(1), 21 (2006)

    Google Scholar 

  8. W. Gu, R.J. Novak, Agent-based modelling of mosquito foraging behaviour for malaria control. Trans. R. Soc. Trop. Med. Hyg. 103(11), 1105–1112 (2009)

    Google Scholar 

  9. M.H. Holsetein, Biology of Anopheles Gambiae: research in French West Africa. Monograph series number 9. World Health Organization, Palais des Nations, Geneva (1954)

  10. D.L. Smith, J. Dushoff, F.E. McKenzie, The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biol. 2(11), e368 (2004)

    Google Scholar 

  11. M.W. Service, Mosquito (Diptera: Culicidae) dispersal—the long and short of it. J. Med. Entomol. 34(6), 579–588 (1997)

    Google Scholar 

  12. M.T. Gillies, Studies on the dispersion and survival of Anopheles gambiae Giles in East Africa, by means of marking and release experiments. Bull. Entomol. Res. 52(1), 99–127 (1961)

    Google Scholar 

  13. M.T. Gillies, T.J. Wilkes, The effect of high fences on the dispersal of some West African mosquitoes (Diptera: Culicidae). Bull. Entomol. Res. 68(3), 401–408 (1978)

    Google Scholar 

  14. M.T. Gillies, T.J. Wilkes, Field experiments with a wind tunnel on the flight speed of some West African mosquitoes (Diptera: Culicidae). Bull. Entomol. Res. 71(1), 65–70 (1981)

    Google Scholar 

  15. J.T. Midega, C.M. Mbogo, H. Mwambi, M.D. Wilson, G. Ojwang, J.M. Mwangangi, J.G. Nzovu, J.I. Githure, G. Yan, J.C. Beier, Estimating dispersal and survival of Anopheles gambiae and Anopheles funestus along the Kenyan coast by using mark–release–recapture methods. J. Med. Entomol. 44(6), 923–929 (2007)

    Google Scholar 

  16. J.M.O. Depinay, C.M. Mbogo, G. Killeen, B. Knols, J. Beier, J. Carlson, J. Dushoff, P. Billingsley, H. Mwambi, J. Githure, A.M. Toure, A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malar. J. 3(1), 29 (2004)

    Google Scholar 

  17. S. Nourridine, M.I. Teboh-Ewungkem, G.A. Ngwa, A mathematical model of the population dynamics of disease-transmitting vectors with spatial consideration. J. Biol. Dyn. 5(4), 335–365 (2011)

    MathSciNet  MATH  Google Scholar 

  18. M. Otero, N. Schweigmann, H.G. Solari, A stochastic spatial dynamical model for Aedes aegypti. Bull. Math. Biol. 70(5), 1297 (2008)

    MathSciNet  MATH  Google Scholar 

  19. L. Yakob, G. Yan, A network population model of the dynamics and control of African malaria vectors. Trans. R. Soc. Trop. Med. Hyg. 104(10), 669–675 (2010)

    Google Scholar 

  20. G.A. Ngwa, On the population dynamics of the malaria vector. Bull. Math. Biol. 68(8), 2161–2189 (2006)

    MathSciNet  MATH  Google Scholar 

  21. M. Otero, H.G. Solari, N. Schweigmann, A stochastic population dynamics model for Aedes aegypti: formulation and application to a city with temperate climate. Bull. Math. Biol. 68(8), 1945–1974 (2006)

    MathSciNet  MATH  Google Scholar 

  22. M.T. White, J.T. Griffin, T.S. Churcher, N.M. Ferguson, M.G. Basáñez, A.C. Ghani, Modelling the impact of vector control interventions on Anopheles gambiae population dynamics. Parasites Vectors 4(1), 153 (2011)

    Google Scholar 

  23. A. Saul, Zooprophylaxis or zoopotentiation: the outcome of introducing animals on vector transmission is highly dependent on the mosquito mortality while searching. Malar. J. 2(1), 32 (2003)

    Google Scholar 

  24. M. Raffy, A. Tran, On the dynamics of flying insects populations controlled by large scale information. Theor. Popul. Biol. 68(2), 91–104 (2005)

    MATH  Google Scholar 

  25. A. Tran, M. Raffy, On the dynamics of dengue epidemics from large-scale information. Theor. Popul. Biol. 69(1), 3–12 (2006)

    MATH  Google Scholar 

  26. Y. Dumont, Modeling mosquito distribution. Impact of the landscape. In: AIP Conference Proceedings (Vol. 1389, No. 1, pp. 1244–1247). American Institute of Physics (2011)

  27. Y. Dumont, C. Dufourd, Spatio-temporal modeling of mosquito distribution. In AIP conference proceedings (Vol. 1404, No. 1, pp. 162-167). American Institute of Physics (2011)

  28. S.U.I. Ahmad et al., A new heuristic computational solver for nonlinear singular Thomas-Fermi system using evolutionary optimized cubic splines. Eur. Phys. J. Plus 135, 1–29 (2020)

    Google Scholar 

  29. A.H. Bukhari et al., Neuro-fuzzy modeling and prediction of summer precipitation with application to different meteorological stations. Alex. Eng. J. 59, 101–116 (2020)

    Google Scholar 

  30. W. Waseem et al., A study of changes in temperature profile of porous fin model using cuckoo search algorithm. Alex. Eng. J. 59, 11–24 (2020)

    Google Scholar 

  31. M. Umar et al., Intelligent computing for numerical treatment of nonlinear prey–predator models. Appl. Soft Comput. 80, 506–524 (2019)

    Google Scholar 

  32. M.A.Z. Raja, A. Zameer, A.U. Khan, A.M. Wazwaz, A new numerical approach to solve Thomas–Fermi model of an atom using bio-inspired heuristics integrated with sequential quadratic programming. Springer Plus 5(1), 1400 (2016)

    Google Scholar 

  33. Z. Sabir et al., Novel design of Morlet wavelet neural network for solving second order Lane–Emden equation. Math. Comput. Simul. 172, 1–14 (2020)

    MathSciNet  Google Scholar 

  34. M.A.Z. Raja, F.H. Shah, E.S. Alaidarous, M.I. Syam, Design of bio-inspired heuristic technique integrated with interior-point algorithm to analyze the dynamics of heartbeat model. Appl. Soft Comput. 52, 605–629 (2017)

    Google Scholar 

  35. M.A.Z. Raja, Numerical treatment for boundary value problems of pantograph functional differential equation using computational intelligence algorithms. Appl. Soft Comput. 24, 806–821 (2014)

    Google Scholar 

  36. I. Ahmad et al., Novel applications of intelligent computing paradigms for the analysis of nonlinear reactive transport model of the fluid in soft tissues and microvessels. Neural Comput. Appl. 31(12), 9041–9059 (2019)

    Google Scholar 

  37. M.A.Z. Raja, J. Mehmood, Z. Sabir, A.K. Nasab, M.A. Manzar, Numerical solution of doubly singular nonlinear systems using neural networks-based integrated intelligent computing. Neural Comput. Appl. 31(3), 793–812 (2019)

    Google Scholar 

  38. M.A.Z. Raja, M. Umar, Z. Sabir, J.A. Khan, D. Baleanu, A new stochastic computing paradigm for the dynamics of nonlinear singular heat conduction model of the human head. Eur. Phys. J. Plus 133(9), 364 (2018)

    Google Scholar 

  39. R. Jamal et al., Hybrid bio-inspired computational heuristic paradigm for integrated load dispatch problems involving stochastic wind. Energies 12(13), 2568 (2019)

    Google Scholar 

  40. A. Ara, N.A. Khan et al., Wavelets optimization method for evaluation of fractional partial differential equations: an application to financial modelling. Adv. Differ. Equ. 2018(1), 8 (2018)

    MathSciNet  MATH  Google Scholar 

  41. A.M. Lutambi, M.A. Penny, T. Smith, N. Chitnis, Mathematical modelling of mosquito dispersal in a heterogeneous environment. Math. Biosci. 241(2), 198–216 (2013)

    MathSciNet  MATH  Google Scholar 

  42. N. Chitnis, T. Smith, R. Steketee, A mathematical model for the dynamics of malaria in mosquitoes feeding on a heterogeneous host population. J. Biol. Dyn. 2(3), 259–285 (2008)

    MathSciNet  MATH  Google Scholar 

  43. G.R.A. Okogun, Life-table analysis of Anopheles malaria vectors: generational mortality as tool in mosquito vector abundance and control studies. J. Vector Borne Dis. 42(2), 45 (2005)

    Google Scholar 

  44. R.D. Ward, Medical Entomology for Students 3rd Edn. By MW Service, pp. 285. Cambridge University Press UK, 2004. ISBN 0 521 54775 X.£ 27.00.(US $48.00). Parasitology, 131(3), pp. 436–436 (2005)

  45. A. Dao, A. Adamou, J.E. Crawford, J.M. Ribeiro, R. Gwadz, S.F. Traoré, T. Lehmann, The distribution of hatching time in Anopheles gambiae. Malar. J. 5(1), 19 (2006)

    Google Scholar 

  46. N. Srinivas, K. Deb, Muilti-objective optimization using no dominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

    Google Scholar 

  47. A.M. Zalzala, Genetic Algorithms in Engineering Systems (Vol. 55). Iet (1997)

  48. K. Majeed et al., A genetic algorithm optimized Morlet wavelet artificial neural network to study the dynamics of nonlinear Troesch’s system. Appl. Soft Comput. 56, 420–435 (2017)

    Google Scholar 

  49. I. Ahmad et al., Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics. Eur. Phys. J. Plus 133(5), 184 (2018)

    Google Scholar 

  50. A. Rezoug, M. Bader-El-Den, D. Boughaci, Guided genetic algorithm for the multidimensional knapsack problem. Memet. Comput. 10(1), 29–42 (2018)

    Google Scholar 

  51. M. Tan, H.L. Yang, Y.X. Su, Genetic algorithms with greedy strategy for green batch scheduling on non-identical parallel machines. Memet. Comput. 11(4), 439–452 (2019)

    Google Scholar 

  52. A. Mehmood et al., Intelligent computing to analyze the dynamics of magnetohydrodynamic flow over stretchable rotating disk model. Appl. Soft Comput. 67, 8–28 (2018)

    Google Scholar 

  53. A. Mehmood et al., Design of neuro-computing paradigms for nonlinear nanofluidic systems of MHD Jeffery-Hamel flow. J. Taiwan Inst. Chem. Eng. 91, 57–85 (2018)

    Google Scholar 

  54. M.A.Z. Raja, Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimised with PSO and SQP. Connect. Sci. 26(3), 195–214 (2014)

    ADS  Google Scholar 

  55. M.A.Z. Raja, M.A. Manzar, R. Samar, An efficient computational intelligence approach for solving fractional order Riccati equations using ANN and SQP. Appl. Math. Model. 39(10–11), 3075–3093 (2015)

    MathSciNet  MATH  Google Scholar 

  56. P.E. Wahl, S.W. Løvseth, Formulating the optimization problem when using sequential quadratic programming applied to a simple LNG process. Comput. Chem. Eng. 82, 1–12 (2015)

    Google Scholar 

  57. C.L. Xiao, H.X. Huang, Optimal design of heating system in rapid thermal cycling blow mold by a two-step method based on sequential quadratic programming. Int. Commun. Heat Mass Transf. 96, 114–121 (2018)

    Google Scholar 

  58. X. Yan, Z. Zhu, Q. Wu, W. Gong, L. Wang, Elastic parameter inversion problem based on brain storm optimization algorithm. Memet. Comput. 11(2), 143–153 (2019)

    Google Scholar 

  59. I. Ahmad et al., Neural network methods to solve the Lane-Emden type equations arising in thermodynamic studies of the spherical gas cloud model. Neural Comput. Appl. 28(1), 929–944 (2017)

    Google Scholar 

  60. M.F. Fateh et al., Differential evolution based computation intelligence solver for elliptic partial differential equations. Frontiers Inf. Technol. Electron. Eng. 20(10), 1445–1456 (2019)

    Google Scholar 

  61. A. Mehmood, A. Zameer, S.H. Ling, A. ur Rehman, M.A.Z. Raja, Integrated computational intelligent paradigm for nonlinear electric circuit models using neural networks, genetic algorithms and sequential quadratic programming. Neural Comput. Appl. (2019). https://doi.org/10.1007/s00521-019-04573-3

    Article  Google Scholar 

  62. F. Yao, Y. Yao, L. Xing, H. Chen, Z. Lin, T. Li, An intelligent scheduling algorithm for complex manufacturing system simulation with frequent synchronizations in a cloud environment. Memet. Comput. 11(4), 357–370 (2019)

    Google Scholar 

  63. X. Li, S. Xiao, C. Wang, J. Yi, Mathematical modeling and a discrete artificial bee colony algorithm for the welding shop scheduling problem. Memet. Comput. 11(4), 371–389 (2019)

    Google Scholar 

  64. Z. Masood et al., Design of fractional order epidemic model for future generation tiny hardware implants. Future Gener. Comput. Syst. 106, 43–54 (2020)

    Google Scholar 

  65. A.H. Bukhari et al., Fractional neuro-sequential ARFIMA-LSTM for financial market forecasting. IEEE Access 8, 71326–71338 (2020)

    Google Scholar 

  66. A. Zameer et al., Fractional-order particle swarm based multi-objective PWR core loading pattern optimization. Ann. Nucl. Energy 135, 106982 (2020)

    Google Scholar 

  67. Y. Muhammad, R. Khan, F. Ullah et al., Design of fractional swarming strategy for solution of optimal reactive power dispatch. Neural Comput. Appl. (2019). https://doi.org/10.1007/s00521-019-04589-9

    Article  Google Scholar 

  68. S. Akbar et al., Novel application of FO-DPSO for 2-D parameter estimation of electromagnetic plane waves. Neural Comput. Appl. 31(8), 3681–3690 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asif Zahoor Raja.

Ethics declarations

Conflict of interest

The authors state that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umar, M., Raja, M.A.Z., Sabir, Z. et al. A stochastic computational intelligent solver for numerical treatment of mosquito dispersal model in a heterogeneous environment. Eur. Phys. J. Plus 135, 565 (2020). https://doi.org/10.1140/epjp/s13360-020-00557-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00557-8

Navigation