Skip to main content
Log in

Stability and consistent interactions in higher derivative matter field theories

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We present the constructions of consistent interactions among the Abelian gauge field and matter fields in the higher derivative systems. Based on the order reduction technique, we are able to gauge the higher derivative models in the BV formalism. Inserting the equations of motion of the auxiliary fields into the antighost number zero part in the deformed master action, we will recover the resulting theory in the Lagrangian density form with extra higher derivative interaction terms. Furthermore, we investigate the problems of stabilities both in the free and coupling higher derivative dynamics using a series of additional bounded integrals of motion. In this way, we show that the 00-component of the energy–momentum tensors could be positive definite and therefore the higher derivative systems are all stable before and after the deformation procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data are publicy released on a regular basis by IceCube at https://icecube.wisc.edu/science/data/access/. The data used in this publication will be made available at this URL].

References

  1. W. Thirring, Regularization as a consequence of higher order equations. Phys. Rev. 77, 570 (1950)

    Article  ADS  Google Scholar 

  2. A. Pais, G.E. Uhlenbeck, On field theories with non-localized action. Phys. Rev. 79, 145–165 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  3. E.S. Fradkin, A.A. Tseytlin, Renormalizable asymptotically free quantum theory of gravity. Nucl. Phys. B 201, 469 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  4. I.L. Buchbinder, S.D. Odintsov, I.L. Shapiro, Effective Action in Quantum Gravity (IOP, Bristol, 1992)

    Google Scholar 

  5. M. Ostrogradsky, in Mem. Acad. St. Petersbourg, vol. VI, p. 385 (1850)

  6. A. Mostafazadeh, Pseudo-hermiticity versus PT symmetry 3: equivalence of pseudoHermiticity and the presence of antilinear symmetries. J. Math. Phys. 43, 3944 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. C.M. Bender, Introduction to PT-symmetric quantum theory. Contemp. Phys. 46, 277 (2005)

    Article  ADS  Google Scholar 

  8. C.M. Bender, Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. C.M. Bender, P.D. Mannheim, No-ghost theorem for the fourth-order derivative Pais–Uhlenbeck oscillator. Phys. Rev. Lett 100(11), 110402 (2007)

    Article  Google Scholar 

  10. A. Salvio, A. Strumia, Quantum mechanics of 4-derivative theories. Eur. Phys. J. C 76, 227 (2016)

    Article  ADS  Google Scholar 

  11. T.D. Lee, G.C. Wick, Negative metric and the unitarity of the S matrix. Nucl. Phys. B 9, 209–243 (1969)

    Article  ADS  Google Scholar 

  12. T.D. Lee, G.C. Wick, Finite theory of quantum electrodynamics. Phys. Rev. D 2, 1033–1048 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Raidal, H. Veermae, On the quantisation of complex higher derivative theories and avoiding the ostrogradsky ghost. Nucl. Phys. B 916, 607–626 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. D.S. Kaparulin, S.L. Lyakhovich, A.A. Sharapov, Classical and quantum stability of higher-derivative dynamics. Eur. Phys. J. C 74(10), 3072 (2014)

    Article  ADS  Google Scholar 

  15. V.A. Abakumova, D.S. Kaparulin, S.L. Lyakhovich, Stable interactions between extended Chern–Simons theory and charged scalar field with higher derivatives: Hamiltonian formalism. Russ. Phys. J. 62, 12–22 (2019)

    Article  Google Scholar 

  16. V.A. Abakumova, D.S. Kaparulin, S.L. Lyakhovich, Conservation laws and stability of higher derivative extended Chern–Simons. (2019). arXiv:1907.02267

  17. V.A. Abakumova, D.S. Kaparulin, S.L. Lyakhovich, Stable interactions between higher derivative extended Chern–Simons and charged scalar field. (2019). arXiv:1907.08075

  18. D.S. Kaparulin, Conservation laws and stability of field theories of derived type. Symmetry 11(5), 642 (2019)

    Article  Google Scholar 

  19. V.A. Abakumova, D.S. Kaparulin, S.L. Lyakhovich, Stable interactions in higher derivative field theories of derived type. Phys. Rev. D 99, 045020 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  20. D.S. Kaparulin, Lagrange Anchor for Bargmann Wigner equations. (2020). arXiv:1210.2134

  21. D.S. Kaparulin, S.L. Lyakhovich, A.A. Sharapov, Lagrange Anchor and characteristic symmetries of free massless fields. SIGMA 8, 021 (2012)

    MathSciNet  MATH  Google Scholar 

  22. C. Becchi, A. Rouet, R. Stora, Renormalization of the abelian Higgs–Kibble model. Commun. Math. Phys. 42, 127–162 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  23. C. Becchi, A. Rouet, R. Stora, Renormalization of gauge theories. Ann. Phys. 98(2), 287–321 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  24. I.V. Tyutin, Gauge invariance in field theory and statistical physics in operator formalism. arXiv:0812.0580

  25. G. Barnich, M. Henneaux, Consistent couplings between fields with a gauge freedom and deformations of the master equation. Phys. Lett. B 311, 123 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  26. M. Henneaux, Consistent interactions between gauge fields: the cohomological approach. Contemp. Math. 219, 93 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  27. N. Boulanger, C. Deffayet, S.G. Saenz and L. Traina, Consistent deformations of free massive field theories in the Stueckelberg formulation, JHEP. 1807

  28. G. Barnich, N. Boulanger, M. Henneaux, B. Julia, V. Lekeu, A. Ranjbar, Deformations of vector-scalar models. JHEP 1802, 064 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. H.J. Rothe, K.D. Rothe, From the BRST invariant Hamiltonian to the field–antifield formalism. Ann. Phys. 323, 1384–1396 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  30. C. Bizdadea, M.T. Miauta, S.O. Saliu, Hamiltonian BRST interactions in Abelian theories. Eur. Phys. J. C 19, 191–200 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  31. C. Bizdadea, M.T. Miauta, S.O. Saliu, Nonabelian interactions from Hamiltonian BRST cohomology. Eur. Phys. J. C 21, 577–585 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  32. G. Barnich, F. Brandt, M. Henneaux, Local BRST cohomology in the antifield formalism. I. General theorems. Commun. Math. Phys. 174, 57 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  33. G. Barnich, F. Brandt, M. Henneaux, Local BRST cohomology in the antifield formalism. II. Application to Yang–Mills theory. Commun. Math. Phys. 174, 93 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  34. G. Barnich, F. Brandt, M. Henneaux, Local BRST cohomology in gauge theories. Phys. Rep. 338, 439 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  35. M. Henneaux, Lectures on the antifield-BRST formalism for gauge theories. Nucl. Phys. B 18A, 47–106 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  36. M. Henneaux, C. Teitelboim, Quantization of Gauge Systems (Princeton University Press, Princeton, 1992)

    Book  Google Scholar 

  37. J. Gomis, J. París, S. Samuel, Antibracket, antifields and gauge theory quantization. Phys. Rept. 259, 1–145 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  38. A. Fuster, M. Henneaux, A. Maas, BRST-antifield quantization: a short review. Int. J. Geom. Methods Mod. Phys. 2, 939–964 (2005)

    Article  MathSciNet  Google Scholar 

  39. J.W. Holten, Aspects of BRST quantization, in In Topology and Geometry in Physics, volume 659 of Lecture Notes in Physics, 99–166, Springer, Berlin (2005)

  40. C. Bizdadea, On the cohomological derivation of topological Yang–Mills theory. EPL 49, 123–129 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  41. C. Bizdadea, L. Saliu, S.O. Saliu, On Chapline–Manton couplings: a cohomological approach. Phys. Scr. 61, 307–310 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  42. C. Bizdadea, E.M. Cioroianu, I. Negru, S.O. Saliu, Cohomological derivation of the couplings between an abelian gauge field and matter fields. Ann. Phys. 10, 415–427 (2001)

    Article  MathSciNet  Google Scholar 

  43. C. Bizdadea, E.M. Cioroianu, M.T. Miauta, I. Negru, S.O. Saliu, Lagrangian cohomological couplings among vector fields and matter fields. Ann. Phys. 10, 921–934 (2001)

    Article  MathSciNet  Google Scholar 

  44. A. Danehkar, On the Cohomological derivation of Yang–Mills theory in the antifield formalism. JHEP. Grav. Cosmol. 3, 368–387 (2017)

    Google Scholar 

  45. A.A. Nogueira, C. Palechor, A.F. Ferrari, Reduction of order and Fadeev–Jackiw formalism in generalized electrodynamics. Nucl. Phys. B 939, 372–390 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  46. D.S. Kaparulin, S.L. Lyakhovich, A.A. Sharapov, Stable interactions via proper deformations. J. Phys. A Math. Theor. 49, 155204 (2016)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the G.W.Wan for long time encouragements and is grateful to S.M. Zhu for useful supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jialiang Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J. Stability and consistent interactions in higher derivative matter field theories. Eur. Phys. J. Plus 135, 555 (2020). https://doi.org/10.1140/epjp/s13360-020-00562-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00562-x

Navigation