Skip to main content
Log in

Anisotropic strange stars through embedding technique in massive Brans–Dicke gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper investigates the existence and properties of anisotropic strange quark stars in the context of massive Brans–Dicke theory. The field equations are constructed in Jordan frame by assuming a suitable potential function with MIT bag model. We employ the embedding class-one approach as well as junction conditions to determine the unknown metric functions. Radius of the strange star candidate, LMC X-4, is predicted through its observed mass for different values of the bag constant. We analyze the effects of coupling parameter as well as mass of scalar field on state determinants and execute multiple checks on the stability and viability of the spherical system. It is concluded that the resulting stellar structure is physically viable and stable as it satisfies the energy conditions as well as essential stability criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Baade, F. Zwicky, Phys. Rev. 46, 76 (1934)

    ADS  Google Scholar 

  2. A. Hewish et al., Nature 217, 709 (1968)

    ADS  Google Scholar 

  3. A. Ruderman, Annu. Rev. Astron. Astrophs. 10, 427 (1972)

    ADS  Google Scholar 

  4. L. Herrera, N.O. Santos, Phys. Rep. 286, 53 (1997)

    ADS  MathSciNet  Google Scholar 

  5. T. Harko, M.K. Mak, Ann. Phys. 11, 3 (2002)

    Google Scholar 

  6. S.K.M. Hossein et al., Int. J. Mod. Phys. D 21, 1250088 (2012)

    ADS  Google Scholar 

  7. B.C. Paul, R. Deb, Astrophys. Space Sci. 354, 421 (2014)

    ADS  Google Scholar 

  8. E. Witten, Phys. Rev. D 30, 272 (1984)

    ADS  Google Scholar 

  9. C. Alcock, A.V. Olinto, Annu. Rev. Nucl. Part. Sci. 38, 161 (1988)

    ADS  Google Scholar 

  10. J. Madsen, Lect. Notes Phys. 516, 162 (1999)

    ADS  Google Scholar 

  11. G.H. Bordbar, A.R. Peivand, Res. Astron. Astrophys. 11, 851 (2011)

    ADS  Google Scholar 

  12. B.P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017)

    ADS  Google Scholar 

  13. The LIGO Scientific Collaboration, the Virgo Collaboration, Abbott, B.P. et al: Astrophys. J. Lett. 892(2020)L3

  14. P. Haensel, J.L. Zdunik, R. Schaffer, Astron. Astrophys. 160, 121 (1986)

    ADS  Google Scholar 

  15. K.S. Cheng, Z.G. Dai, T. Lu, Int. J. Mod. Phys. D 7, 139 (1998)

    ADS  Google Scholar 

  16. T. Harko, M.K. Mak, Chin. J. Astron. Astrophys. 2, 248 (2002)

    ADS  Google Scholar 

  17. F. Rahaman et al., Eur. Phys. J. C 74, 3126 (2014)

    ADS  Google Scholar 

  18. P. Bhar, Astrophys. Space Sci. 357, 46 (2015)

    ADS  Google Scholar 

  19. J.D.V. Arbañil, M. Malheiro, AIP Conf. Proc. 1693, 030007 (2015)

  20. S.K. Maurya et al., Eur. Phys. J. C 75, 389 (2015)

    ADS  Google Scholar 

  21. S.K. Maurya et al., Astrophys. Space Sci. 361, 163 (2016)

    ADS  Google Scholar 

  22. M.H. Murad, Astrophys. Space Sci. 361, 20 (2016)

    ADS  Google Scholar 

  23. D. Deb et al., Ann. Phys. 387, 239 (2017)

    ADS  Google Scholar 

  24. D. Deb et al., Eur. Phys. J. C 78, 465 (2018)

    ADS  Google Scholar 

  25. P. Bhar, Eur. Phys. J. C 79, 138 (2019)

    ADS  Google Scholar 

  26. C.M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, Cambridge, 1993)

    MATH  Google Scholar 

  27. C. Brans, R.H. Dicke, Phys. Rev. 124, 3 (1961)

    Google Scholar 

  28. C.M. Will, Living Rev. Rel. 4, 4 (2001)

    Google Scholar 

  29. E.J. Weinberg, Phys. Rev. D 40, 3950 (1989)

    ADS  Google Scholar 

  30. L. Perivolaropoulos, Phys. Rev. D 81, 047501 (2010)

    ADS  Google Scholar 

  31. H. Sotani, Phys. Rev. D 86, 124036 (2012)

    ADS  Google Scholar 

  32. H.O. Silva et al., Class. Quantum Grav. 32, 145008 (2015)

    ADS  Google Scholar 

  33. D.D. Doneva, S.S. Yazadjiev, J. Cosmol. Astropart. Phys. 11, 019 (2016)

    ADS  Google Scholar 

  34. K.V. Staykov, Eur. Phys. J. C 78, 586 (2018)

    ADS  Google Scholar 

  35. A.V. Astashenok, Int. J. Mod. Phys. Conf. Ser. 41, 1660130 (2016)

    Google Scholar 

  36. M. Sharif, A. Waseem, Eur. Phys. J. C 78, 868 (2018)

    ADS  Google Scholar 

  37. D. Deb et al., J. Cosmol. Astropart. Phys. 10, 070 (2019)

  38. S.K. Maurya et al., Phys. Rev. D 100, 044014 (2019)

    ADS  MathSciNet  Google Scholar 

  39. M. Sharif, A. Majid, Astrophys. Space Sci. 365, 42 (2020)

    ADS  Google Scholar 

  40. J. Khoury, A. Weltman, Phys. Rev. D 69, 044026 (2004)

    ADS  MathSciNet  Google Scholar 

  41. S.S. Yazadjiev, D.D. Doneva, D. Popchev, Phys. Rev. D 93, 084038 (2016)

    ADS  MathSciNet  Google Scholar 

  42. L.P. Eisenhart, Riemannian Geometry (Princeton University Press, Princeton, 1925)

    MATH  Google Scholar 

  43. J. Eiesland, Trans. Am. Math. Soc. 27, 213 (1925)

    MathSciNet  Google Scholar 

  44. S.K. Maurya et al., Eur. Phys. J. C 76, 266 (2016)

    ADS  Google Scholar 

  45. S. O’Brien, J.L. Synge, Commun. Dublin Inst. Adv. Stud. A 9, (1952)

  46. W.F. Bruckman, E. Kazes, Phys. Rev. D 16, 2 (1977)

    Google Scholar 

  47. M.L. Rawls et al., Astrophys. J. 730, 25 (2011)

    ADS  Google Scholar 

  48. K. Lake, Phys. Rev. D 67, 104015 (2003)

    ADS  MathSciNet  Google Scholar 

  49. Y. Fujii, K. Maeda, The Scalar–Tensor Theory of Gravitation (Cambridge University Press, Cambridge, 2003)

    MATH  Google Scholar 

  50. H.A. Buchdahl, Phys. Rev. D 116, 1027 (1959)

    ADS  Google Scholar 

  51. B.V. Ivanov, Phys. Rev. D 65, 104011 (2002)

    ADS  Google Scholar 

  52. H. Abreu, H. Hernandez, L.A. Nunez, Class. Quantum Gravit. 24, 4631 (2007)

    ADS  Google Scholar 

  53. L. Herrera, Phys. Lett. A 165, 206 (1992)

    ADS  Google Scholar 

  54. S. Chandrasekhar, Astrophys. J. 140, 417 (1964)

    ADS  MathSciNet  Google Scholar 

  55. S. Chandrasekhar, Phys. Rev. Lett. 12, 114 (1964)

    ADS  MathSciNet  Google Scholar 

  56. H. Heintzmann, W. Hillebrandt, Astron. Astrophys. 24, 51 (1975)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sharif.

Appendix A

Appendix A

The components of \(T^{\gamma \Phi }_{\delta }\) are obtained as

$$\begin{aligned} T_0^{0\Phi }= & {} e^{-\lambda }\left[ \Phi ''+\left( \frac{2}{r}-\frac{\lambda '}{2} \right) \Phi '+\frac{\omega _\mathrm{BD}}{2\Phi }\Phi '^2-e^\lambda \frac{V(\Phi )}{2}\right] ,\end{aligned}$$
(A1)
$$\begin{aligned} T_1^{1\Phi }= & {} e^{-\lambda }\left[ \left( \frac{2}{r}+\frac{\nu '}{2}\right) \Phi '-\frac{\omega _\mathrm{BD}}{2\Phi }\Phi '^2-e^\lambda \frac{V(\Phi )}{2})\right] ,\end{aligned}$$
(A2)
$$\begin{aligned} T_2^{2\Phi }= & {} e^{-\lambda }\left[ \Phi ''+\left( \frac{1}{r}-\frac{\lambda '}{2}+\frac{\nu '}{2}\right) \Phi '+\frac{\omega _\mathrm{BD}}{2\Phi }\Phi '^2 -e^\lambda \frac{V(\Phi )}{2} \right] . \end{aligned}$$
(A3)

Energy density and pressure components take the following form

$$\begin{aligned} \rho= & {} \frac{1}{2r^2}\left\{ \xi ^2\Phi ^2\left[ 2R^2(2M-R)\left( M\left( r^2-2R^2\right) +R^3\right) \left( r\Phi '(r)+2\Phi (r)\right) \right] \right. \nonumber \\&-\left. \xi \left[ r^2R^2\omega _\mathrm{BD}(R-2M)\Phi '^2(r) +2r\Phi (r)\left( \left( R^3-M\left( r^2+2R^2\right) \right) \Phi '(r)\right. \right. \right. \nonumber \\&+\left. \left. \left. rR^2 (R-2M)\Phi ''(r)\right) -2\Phi ^2(r)\left( 2M(r-R)(r+R)+R^3\right) \right] \right. \nonumber \\&+\,r^2 V(\Phi )+\left. 2\Phi (r)\right\} , \end{aligned}$$
(A4)
$$\begin{aligned} p_r= & {} \frac{\xi }{4r^2}r^2R^2\omega _\mathrm{BD}(2M-R)\Phi '^2(r)+2\Phi ^2(r)\left( 2M(r-R)(r+R)+R^3\right) \nonumber \\&+r\Phi (r)\left( \left( 2M(r-R)(r+R)+R^3\right) \Phi '(r)+rR^2(2 M-R)\Phi ''(r)\right) \nonumber \\&+\frac{\xi ^2\Phi ^2}{4r}(R^2(2M-R)\left( M\left( r^2-2 R^2\right) +R^3\right) \left( r\Phi '(r)+2\Phi (r)\right) )-\mathcal {B}, \end{aligned}$$
(A5)
$$\begin{aligned} p_\perp= & {} \frac{\Phi \xi }{4r^2}\left[ \left( M\left( r^2-2R^2\right) +R^3\right) \left( 2\Phi (r)\left( 2M(r-R)(r+R)+R^3\right) \right. \right. \nonumber \\&+\left. \left. 3rR^2(R-2M)\Phi '(r)\right) \right] +\xi \left[ 3 r^2R^2\omega _\mathrm{BD}(R-2M)\Phi '^2(r)+r\Phi (r)\right. \nonumber \\&\times \left. \left( \left( -2Mr^2+14M R^2-7R^3\right) \Phi '(r)+3rR^2(R-2M)\Phi ''(r)\right) -2\Phi ^2(r)\right. \nonumber \\&\times \left. \left( 2M\left( r^2-3 R^2\right) +3R^3\right) \right] -\mathcal {B}+\frac{\Phi (r)}{r^2}, \end{aligned}$$
(A6)

where \(\xi =\frac{\Phi ^{-1}(r)}{\left( 2Mr^2e^{\frac{M(r-R)(r+R)}{R^2(R-2 M)}}+R^2(R-2M)\right) }\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, M., Majid, A. Anisotropic strange stars through embedding technique in massive Brans–Dicke gravity. Eur. Phys. J. Plus 135, 558 (2020). https://doi.org/10.1140/epjp/s13360-020-00574-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00574-7

Navigation