Skip to main content
Log in

Photoionization phase shift and Wigner time delay of endohedrally confined atoms using transient phase methods

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In contrast to the conventional finite difference methods, two transient phase methods have been effectively used in the present work to directly compute the photoionization phase shift and Wigner time delay of confined atoms (A@C60) in the single-active electron (SAE) approximation. The different phase methods: (A) employing logarithmic derivatives at shell boundaries, and (B) Born approximation are verified with the help of well-established finite difference methods in SAE approximation and sophisticated many-electron techniques. In this work, confinement oscillations on the dipole phase and photoelectron group delay following ionization from 1s subshell of H@C60, 3p subshell of Ar@C60 and 5p subshell of Xe@C60 are analyzed. The comparison with many-body calculation shows that the features in the time delay of a confined system are governed mainly by the effects of screening apart from that due to the external potential. A systematic study and comparison of the results from phase methods and many-electron techniques indicate that these techniques can be effectively used in the analysis of photoionization phase shift and time delay in confined atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.J. Puska, R.M. Nieminen, Phys. Rev. A 47, 1181 (1993)

    ADS  Google Scholar 

  2. A.S. Baltenkov, J. Phys. B: At. Mol. Opt. Phys. 32, 2745 (1999)

    ADS  Google Scholar 

  3. M.Y. Amusia, A.S. Baltenkov, U. Becker, Phys. Rev. A 62, 012701 (2000)

    ADS  Google Scholar 

  4. M.A. McCune, E.M. Mohamed, H.S. Chakraborty, Phys. Rev. A 80, 011201(R) (2009)

    ADS  Google Scholar 

  5. V.K. Dolmatov, P. Brewer, S.T. Manson, Phys. Rev. A 78, 013415 (2008)

    ADS  Google Scholar 

  6. D.S. Bethune, R.D. Johnson, J.R. Salem, M.S. de Vries, C.S. Yannoni, Nature 366, 123 (1993)

    ADS  Google Scholar 

  7. A.S. Baltenkov, V.K. Dolmatov, S.T. Manson, Phys. Rev. A 66, 023201 (2002)

    ADS  Google Scholar 

  8. M. Aichinger et al., J. Mod. Opt. 50, 2691 (2003)

    ADS  Google Scholar 

  9. Z. Chen, A.Z. Msezane, J. Phys. B: At. Mol. Opt. Phys. 42, 165206 (2009)

    ADS  Google Scholar 

  10. A.L. Kilcoyne et al., Phys. Rev. Lett. 105, 213001 (2010)

    ADS  Google Scholar 

  11. R.A. Phaneuf et al., Phys. Rev. A 88, 053402 (2013)

    ADS  Google Scholar 

  12. L. Jacak, O. Hawrylak, A. Wojs, Quantum Dots (Springer), Berlin, 1998)

    Google Scholar 

  13. A. Zrenner, J. Chem. Phys. 112, 7790 (2000)

    ADS  Google Scholar 

  14. F.V. Prudente, L.S. Costa, J.D.M. Vianna, J. Chem. Phys. 123, 224701 (2005)

    ADS  Google Scholar 

  15. S. Saha, A. Thuppilakkadan, H.R. Varma, J. Jose, J. Phys. B: At. Mol. Opt. Phys. 52, 145001 (2019)

    ADS  Google Scholar 

  16. P.C. Deshmukh, A. Mandal, S. Saha, A.S. Kheifets, V.K. Dolmatov, S.T. Manson, Phys. Rev. A 89, 053424 (2014)

    ADS  Google Scholar 

  17. D.A. Keating et al., J. Phys. B: At. Mol. Opt. Phys. 50, 175001 (2017)

    ADS  Google Scholar 

  18. A. Mandal, P.C. Deshmukh, A.S. Kheifets, V.K. Dolmatov, S.T. Manson, Phys. Rev. A 96, 053407 (2017)

    ADS  Google Scholar 

  19. A.W. Bray, F. Naseem, A.S. Kheifets, Phys. Rev. A 98, 043427 (2018)

    ADS  Google Scholar 

  20. A. Kumar et al., Phys. Rev. A 94, 043401 (2016)

    ADS  Google Scholar 

  21. C.J. Joachain, Quantum Collision Theory (North-Holland Publishing, New York, 1975)

    Google Scholar 

  22. F. Calogero, Variable Phase Approach to Potential Scattering (Academic Press Inc, London, 1967)

    MATH  Google Scholar 

  23. V.D. Viterbo, N.H.T. Lemes, J.P. Braga, Revista Brasileira de Ensino de Fisica 36, 1310 (2014)

    Google Scholar 

  24. P.M. Morse, W.P. Allis, Phys. Rev. 44, 269 (1933)

    ADS  Google Scholar 

  25. Z. Chen, A.Z. Msezane, Eur. Phys. J. D 69, 88 (2015)

    ADS  Google Scholar 

  26. E.P. Wigner, Phys. Rev. 98, 145 (1955)

    ADS  MathSciNet  Google Scholar 

  27. X.M. Tong, C.D. Lin, J. Phys. B: At. Mol. Opt. Phys. 38, 2593–2600 (2005)

    ADS  Google Scholar 

  28. H.G. Muller, Phys. Rev. A 60, 1341 (1999)

    ADS  Google Scholar 

  29. A.T. Le, R.R. Lucchese, S. Tonzani, T. Morishita, C.D. Lin, Phys. Rev. A 80, 013401 (2009)

    ADS  Google Scholar 

  30. J.P. Connerade, V.K. Dolmatov, P.A. Lakshmi, S.T. Manson, J. Phys. B: At. Mol. Opt. Phys. 32, L239 (1999)

    ADS  Google Scholar 

  31. V.K. Dolmatov, J.L. King, J.C. Oglesby, J. Phys. B: At. Mol. Opt. Phys. 45, 105102 (2012)

    ADS  Google Scholar 

  32. A.B. Patel, H.S. Chakraborty, J. Phys. B: At. Mol. Opt. Phys. 44, 191001 (2011)

    ADS  Google Scholar 

  33. R.D. Woods, D.S. Saxon, Phys. Rev. 95, 577–578 (1954)

    ADS  Google Scholar 

  34. A.S. Baltenkov, S.T. Manson, A.Z. Msezane, J. Phys. B: At. Mol. Opt. Phys. 48, 185103 (2015)

    ADS  Google Scholar 

  35. C.Y. Lin, Y.K. Ho, J. Phys. B: At. Mol. Opt. Phys. 45, 145001 (2012)

    ADS  Google Scholar 

  36. E.M. Nascimento, F.V. Prudente, M.N. Guimarães, A.M. Maniero, J. Phys. B: At. Mol. Opt. Phys. 44, 015003 (2011)

    ADS  Google Scholar 

  37. W.R. Johnson, C.D. Lin, Phys. Rev. A 20, 964 (1979)

    ADS  Google Scholar 

  38. J.M. Thijssen, Computational Physics (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

  39. Q. Zhang, P. Lan, P. Lu, Phys. Rev. A 90, 43410 (2014)

    ADS  Google Scholar 

  40. H. Friedrich, Theoretical Atomic Physics (Springer, Berlin, 2005)

    MATH  Google Scholar 

  41. B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules (Pearson Education, Noida, 2003)

    Google Scholar 

  42. P. Swan, Nuclear Phys. 18, 245–270 (1960)

    ADS  MathSciNet  Google Scholar 

  43. A.K. Ghatak, S. Lokanathan, Quantum Mechanics: Theory and Applications (Macmillan, Noida, 2004)

    MATH  Google Scholar 

  44. J.P. Connerade, V.K. Dolmatov, S.T. Manson, J. Phys. B: At. Mol. Opt. Phys. 32, L395 (1999)

    Google Scholar 

  45. H.R. Varma, P.C. Deshmukh, V.K. Dolmatov, S.T. Manson, Phys. Rev. A 76, 012711 (2007)

    ADS  Google Scholar 

  46. J. George et al., J. Phys. B: At. Mol. Opt. Phys. 45, 185001 (2012)

    Google Scholar 

  47. W.R. Johnson, K.T. Cheng, Phys. Rev. A 20, 978 (1979)

    ADS  Google Scholar 

  48. A.S. Kheifets, Phys. Rev. A 87, 063404 (2013)

    ADS  Google Scholar 

  49. S. Saha, A. Mandal, J. Jose, H.R. Varma, P.C. Deshmukh, A.S. Kheifets, V.K. Dolmatov, S.T. Manson, Phys. Rev. A 90, 053406 (2014)

    ADS  Google Scholar 

  50. J.M. Dahlstrӧm, T. Carette, E. Lindroth, Phys. Rev. A 86, 061402 (2012)

    ADS  Google Scholar 

  51. K. Klϋnder et al., Phys. Rev. Lett. 106, 143002 (2011)

    ADS  Google Scholar 

  52. D. Guénot et al., Phys. Rev. A 85, 053424 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

J J acknowledges the support provided by DST-SERB through Project No. ECR/2016/001564, and HRV is supported by the DST-SERB through Project with Grant No. EMR/2016/002695.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jobin Jose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Thuppilakkadan, A., Varma, H.R. et al. Photoionization phase shift and Wigner time delay of endohedrally confined atoms using transient phase methods. Eur. Phys. J. Plus 135, 753 (2020). https://doi.org/10.1140/epjp/s13360-020-00762-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00762-5

Navigation