Skip to main content
Log in

Dark energy models from a parametrization of H: a comprehensive analysis and observational constraints

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The presented paper is a comprehensive analysis of two dark energy (DE) cosmological models wherein exact solutions of the Einstein field equations (EFEs) are obtained in a model-independent way (or by cosmological parametrization). A simple parametrization of Hubble parameter (H) is considered for the purpose in the flat Friedmann–Lemaitre–Robertson–Walker background. The parametrization of H covers some known models for some specific values of the model parameters involved. Two models are of special interest which show the behavior of cosmological phase transition from deceleration in the past to acceleration at late times. The model parameters are constrained with 57 points of Hubble datasets together with the 580 points of Union 2.1 compilation supernovae datasets and baryonic acoustic oscillation datasets. With the constrained values of the model parameters, both the models are analyzed and compared with the standard \(\varLambda \)CDM model and showing nice fit to the datasets. Two different candidates of DE are considered, cosmological constant \( \varLambda \) and a general scalar field \(\phi \), and their dynamics are discussed on the geometrical base built. The geometrical and physical interpretations of the two models in consideration are discussed in detail, and the evolution of various cosmological parameters is shown graphically. The age of the Universe in both models is also calculated. Various cosmological parametrization schemes used in the past few decades to find exact solutions of the EFEs are also summarized at the end which can serve as a unified reference for the readers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Union 2.1 compilation supernovae datsets is available at http://supernova.lbl.gov/Union/. Hubble datasets is taken from a research article https://doi.org/10.26456/mmg/2018-611. BAO datasets are taken from the research article https://doi.org/10.1088/1475-7516/2012/03/027.]

References

  1. A.G. Riess et al., Astrophys. J. 116, 1009 (1998)

    Google Scholar 

  2. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    ADS  Google Scholar 

  3. S. Jha et al., Astrophys. J. 659, 122 (2007)

    ADS  Google Scholar 

  4. J. Guy et al., Astron. Astrophys. 466, 11 (2007)

    ADS  Google Scholar 

  5. C.R. Burns et al., Astrophys. J. 141, 19 (2011)

    ADS  Google Scholar 

  6. P. de Bernardis et al., Nature 404, 955 (2000)

    ADS  Google Scholar 

  7. S. Hanany et al., Astrophys. J. Lett. 545, L5 (2000)

    ADS  Google Scholar 

  8. C. Netterfield et al., Astrophys. J. Lett. 474, 47 (1997)

    Google Scholar 

  9. J.R. Mould et al., Astrophys. J. 529, 786 (2000)

    ADS  Google Scholar 

  10. D. Spergal et al., Astrophys. J. Suppl. 148, 175 (2003)

    ADS  Google Scholar 

  11. E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011)

    ADS  Google Scholar 

  12. W.M. Wood-Vasey, Astrophys. J. 666, 694 (2007)

    ADS  Google Scholar 

  13. M.S. Turner, D. Huterer, J. Phys. Soc. Jpn. 76, 111015 (2007)

    ADS  Google Scholar 

  14. B. Chaboyer, Phys. Rep. 307, 23 (1998)

    ADS  Google Scholar 

  15. S. Capozziello, L.Z. Fang, Int. J. Mod. Phys. D 11, 483 (2002)

    ADS  Google Scholar 

  16. G.R. Dvali et al., Phys. Lett. B 485, 208 (2000)

    ADS  MathSciNet  Google Scholar 

  17. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)

    ADS  Google Scholar 

  18. K. Bamba et al., Astrophys. Space Sci. 342, 155 (2012)

    ADS  Google Scholar 

  19. V. Sahni, A.A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000)

    ADS  Google Scholar 

  20. I. Zlatev, L.M. Wang, P.J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999)

    ADS  Google Scholar 

  21. P. Brax, J. Martin, Phys. Rev. D 61, 103502 (2000)

    ADS  Google Scholar 

  22. T. Barreiro, E.J. Copeland, N.J. Nunes, Phys. Rev. D 61, 127301 (2000)

    ADS  Google Scholar 

  23. C. Armendariz-Picon, T. Damour, V. Mukhanov, Phys. Lett. B 458, 219 (1999)

    ADS  MathSciNet  Google Scholar 

  24. T. Chiba, T. Okabe, M. Yamaguchi, Phys. Rev. D 62, 023511 (2000)

    ADS  Google Scholar 

  25. C. Armendariz-Picon, V. Mukhanov, P.J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000)

    ADS  Google Scholar 

  26. R.R. Caldwell, Phys. Lett. B 545, 23 (2003)

    ADS  Google Scholar 

  27. A. Sen, J. High Energy Phys. 0204, 048 (2002)

    ADS  Google Scholar 

  28. M.R. Garousi, Nucl. Phys. B 584, 284 (2000)

    ADS  Google Scholar 

  29. E.A. Bergshoeff et al., J. High Energy Phys. 5, 009 (2000)

    ADS  Google Scholar 

  30. V. Gorini et al., Phys. Rev. D 67, 063509 (2003)

    ADS  Google Scholar 

  31. P.H. Chavanis, Eur. Phys. J. Plus 129, 38 (2012)

    Google Scholar 

  32. K. Schwarzschild, Sitzungsb. der König. Preuss. Akad. der Wissen. 7, 189 (1916)

    Google Scholar 

  33. H.A. Lorentz, A. Einstein, H. Minkowski, H. Weyl, The Principle of Relativity, vol. 175 (Metheun & Co., New York, 1923), p. 1

    MATH  Google Scholar 

  34. W. de Sitter, Mon. Not. R. Astron. Soc. 76, 699 (1916)

    ADS  Google Scholar 

  35. W. de Sitter, Mon. Not. R. Astron. Soc. 77, 155 (1916)

    ADS  Google Scholar 

  36. R.C. Tolman, Phys. Rev. 55, 364 (1939)

    ADS  Google Scholar 

  37. R.J. Adlar, J. Math. Phys. 15, 727 (1974)

    ADS  Google Scholar 

  38. H.A. Buchdahl, Astrophys. J. 147, 310 (1967)

    ADS  Google Scholar 

  39. P.C. Vaidya, R. Tikekar, J. Astrophys. Astron. 3, 325 (1982)

    ADS  Google Scholar 

  40. M.C. Durgapal, J. Phys. A. Math. Gen. 15, 2637 (1982)

    ADS  MathSciNet  Google Scholar 

  41. H. Knutsen, Astrophys. Space Sci. 140, 385 (1988)

    ADS  MathSciNet  Google Scholar 

  42. D. Kramer et al., Exact Solutions of Einstein’s Equations (CUP, Cambridge, 1980)

    MATH  Google Scholar 

  43. P.S. Negi, Int. J. Theor. Phys. 45, 1684 (2006)

    Google Scholar 

  44. A. Edward, Milne, Relativity, Gravitation and World Structure (Oxford University Press, Oxford, 1935)

    Google Scholar 

  45. H. Bondi, T. Gold, Mon. Not. R. Astron. Soc. 108, 252 (1948)

    ADS  Google Scholar 

  46. F. Hoyle, Mon. Not. R. Astron. Soc. 108, 372 (1948)

    ADS  Google Scholar 

  47. J. Yoo, Y. Watanabe, Int. J. Mod. Phys. D 21, 1230002 (2012)

    ADS  Google Scholar 

  48. K. Arun, S.B. Gudennavar, C. Sivaram, Adv. Space Res. 60, 166 (2017)

    ADS  Google Scholar 

  49. J.M. Overduin, F.I. Cooperstock, Phys. Rev. D 58, 043506 (1998)

    ADS  Google Scholar 

  50. R.G. Vishwakarma, Abdussattar, A.K. Beesham, Phys. Rev. D 60, 063507 (1997)

    ADS  Google Scholar 

  51. R.A. Knop et al., Astrophys. J. 598, 102 (2003)

    ADS  Google Scholar 

  52. M. Tegmark et al., Astrophys. J. 606, 702 (2004)

    ADS  Google Scholar 

  53. T.M.C. Abbott et al., Astrophys. J. Lett. 872, L30 (2019)

    ADS  Google Scholar 

  54. J.-F. Zhang et al., Phys. Lett. B 799, 135064 (2019)

    Google Scholar 

  55. W. Zimdahl, D. Pavon, Gen. Relativ. Gravit. 36, 1483 (2004)

    ADS  Google Scholar 

  56. O. Bertolami, D. Pavon, Phys. Rev. D 61, 064007 (2000)

    ADS  Google Scholar 

  57. N. Banerjee, D. Pavon, Phys. Rev. D 63, 043504 (2001)

    ADS  Google Scholar 

  58. G.F.R. Ellis, M. Madsen, Class. Quantum Gravity 8, 667 (1991)

    ADS  Google Scholar 

  59. V. Sahni, Lect. Notes Phys. 653, 141 (2004)

    ADS  Google Scholar 

  60. T.D. Saini et al., Phys. Rev. Lett. 85, 1162 (2000)

    ADS  Google Scholar 

  61. J. Simon et al., Phys. Rev. D 71, 123001 (2005)

    ADS  Google Scholar 

  62. J.V. Cunha, J.A.S. Lima, Mon. Not. R. Astr. Soc. 390, 210 (2008)

    ADS  Google Scholar 

  63. E. Mortsell, C. Clarkson, J. Cosmol. Astropart. Phys. 2009, 044 (2009)

    Google Scholar 

  64. S.K.J. Pacif et al., Int. J. Geom. Methods Mod. Phys. 14(7), 1750111 (2017)

    MathSciNet  Google Scholar 

  65. S. Capozziello, R. Lazkoz, V. Salzano, Phys. Rev. D 84, 124061 (2011)

    ADS  Google Scholar 

  66. D. Stern et al., J. Cosmol. Astropart. Phys. 02, 008 (2010)

    ADS  Google Scholar 

  67. J. Simon, L. Verde, R. Jimenez, Phys. Rev. D 71, 123001 (2005)

    ADS  Google Scholar 

  68. M. Moresco et al., J. Cosmol. Astropart. Phys. 08, 006 (2012)

    ADS  Google Scholar 

  69. C. Zhang et al., Res. Astron. Astrophys. 14, 1221 (2014)

    ADS  Google Scholar 

  70. M. Moresco et al., J. Cosmol. Astropart. Phys. 05, 014 (2016)

    ADS  Google Scholar 

  71. A.L. Ratsimbazafy et al., Mon. Not. R. Astron. Soc. 467, 3239 (2017)

    ADS  Google Scholar 

  72. M. Moresco, Mon. Not. R. Astron. Soc. Lett. 450, L16 (2015)

    ADS  Google Scholar 

  73. E. Gaztañaga, A. Cabre, L. Hui, Mon. Not. R. Astron. Soc. 399, 1663 (2009)

    ADS  Google Scholar 

  74. A. Oka et al., Mon. Not. R. Astron. Soc. 439, 2515 (2014)

    ADS  Google Scholar 

  75. Y. Wang et al., Mon. Not. R. Astron. Soc. 469, 3762 (2017)

    ADS  Google Scholar 

  76. C.H. Chuang, Y. Wang, Mon. Not. R. Astron. Soc. 435, 255 (2013)

    ADS  Google Scholar 

  77. S. Alam et al., Mon. Not. R. Astron. Soc. 470, 2617 (2017)

    ADS  Google Scholar 

  78. C. Blake et al., Mon. Not. R. Astron. Soc. 425, 405 (2012)

    ADS  Google Scholar 

  79. C.H. Chuang et al., Mon. Not. R. Astron. Soc. 433, 3559 (2013)

    ADS  Google Scholar 

  80. L. Anderson et al., Mon. Not. R. Astron. Soc. 441, 24 (2014)

    ADS  Google Scholar 

  81. N.G. Busca et al., Astron. Astrophys. 552, A96 (2013)

    Google Scholar 

  82. J.E. Bautista et al., Astron. Astrophys. 603, A12 (2017)

    Google Scholar 

  83. T. Delubac et al., Astron. Astrophys. 574, A59 (2015)

    Google Scholar 

  84. A. Font-Ribera et al., J. Cosmol. Astropart. Phys. 05, 027 (2014)

    ADS  MathSciNet  Google Scholar 

  85. G.S. Sharov, V.O. Vasiliev, Math.l Model. Geom. 6, 1 (2018)

    Google Scholar 

  86. E. Macaulay et al., Mon. Not. R. Astron. Soc. 486(2), 2184 (2019)

    ADS  Google Scholar 

  87. N. Suzuki et al., Astrophys. J. 746, 85 (2012)

    ADS  Google Scholar 

  88. S. Nesseris, L. Perivolaropoulos, Phys. Rev. D 70, 043531 (2004)

    ADS  Google Scholar 

  89. C. Blake et al., Mon. Not. R. Astron. Soc. 418, 1707 (2011)

    ADS  Google Scholar 

  90. W.J. Percival et al., Mon. Not. R. Astron. Soc. 401, 2148 (2010)

    ADS  Google Scholar 

  91. F. Beutler et al., Mon. Not. R. Astron. Soc. 416, 3017 (2011)

    ADS  Google Scholar 

  92. N. Jarosik et al., Astrophys. J. Suppl. 192, 14 (2011)

    ADS  Google Scholar 

  93. D.J. Eisenstein et al., Astrophys. J. 633, 560 (2005)

    ADS  Google Scholar 

  94. R. Giostri et al., J. Cosmol. Astropart. Phys. 1203, 027 (2012)

    ADS  Google Scholar 

  95. V. Sahni et al., JETP Lett. 77, 201 (2003)

    ADS  Google Scholar 

  96. U. Alam et al., Mon. Not. R. Astron. Soc. 344, 1057 (2003)

    ADS  Google Scholar 

  97. M. Sami et al., Phys. Rev. D 86, 103532 (2012)

    ADS  Google Scholar 

  98. R. Myrzakulov et al., J. Cosmol. Astropart. Phys. 1310, 047 (2013)

    ADS  Google Scholar 

  99. V. Sahni, A. Shaifeloo, A.A. Starobinsky, Phys. Rev. D 78, 103502 (2008)

    ADS  Google Scholar 

  100. C. Zunckel et al., Phys. Rev. Lett. 101, 181301 (2008)

    ADS  Google Scholar 

  101. M. Shahalam et al., Mon. Not. R. Astron. Soc. 448, 2948 (2015)

    ADS  Google Scholar 

  102. A. Agarwal et al., Int. J. Mod. Phys. D 28, 1950083 (2019)

    ADS  Google Scholar 

  103. F. Melia, Astron. J. 144, 110 (2012)

    ADS  Google Scholar 

  104. G.F.R. Ellis, M.S. Madsen, Class. Quantum Gravity 8, 667 (1991)

    ADS  Google Scholar 

  105. X. Zhou, Chin. Phys. B 18, 3115 (2009)

    ADS  Google Scholar 

  106. F. Hoyle, G. Burbidge, J.V. Narlikar, Astrophys. J. 410(2), 437 (1993)

    ADS  Google Scholar 

  107. D. Lohiya, M. Sethi, Class. Quantum Gravity 16, 1545 (1999)

    ADS  Google Scholar 

  108. O. Akarsu et al., J. Cosmol. Astropart. Phys. 01, 22 (2014)

    ADS  MathSciNet  Google Scholar 

  109. J.D. Barrow, N.J. Nunes, Phys. Rev. D 76, 043501 (2007)

    ADS  Google Scholar 

  110. R. Nagpal et al., Ann. Phys. 405, 234 (2019)

    ADS  Google Scholar 

  111. S.D. Odintsov, V.K. Oikonomou, Phys. Rev. D 92(2), 024016 (2015)

    ADS  MathSciNet  Google Scholar 

  112. A. de la Cruz-Dombriz et al., Phys. Rev. D 97, 104040 (2018)

    ADS  MathSciNet  Google Scholar 

  113. M.S. Berman, Nuovo Cimento B Ser. 74B, 182 (1983)

    ADS  Google Scholar 

  114. N. Banerjee, S. Das, K. Ganguly, Pramana 74(3), 481 (2010)

    ADS  Google Scholar 

  115. J.P. Singh, Astrophys. Space Sci. 318, 103 (2008)

    ADS  Google Scholar 

  116. S.K.J. Pacif, B. Mishra, Res. Astron. Astrophys. 15(12), 2141 (2015)

    ADS  Google Scholar 

  117. S. Bhattacharjee, P.K. Sahoo, Phys. Dark Univ. 28, 100537 (2020)

    Google Scholar 

  118. P.H.R.S. Moraes et al., Adv. Astron. 2019, 8574798 (2019)

    ADS  Google Scholar 

  119. F. Cannata, A.Y. Kamenshchik, Int. J. Mod. Phys. D 20, 121 (2010)

    ADS  Google Scholar 

  120. S. Noniri, S.D. Odintsov, Gen. Relativ. Gravit. 38(8), 1285 (2006)

    ADS  Google Scholar 

  121. P.H. Frampton et al., Phys. Lett. B 708, 204 (2012)

    ADS  Google Scholar 

  122. S. Nojiri et al., J. Cosmol. Astropart. Phys. 1509, 044 (2015)

    ADS  Google Scholar 

  123. K. Bamba et al., Phys. Lett. B 732, 349 (2014)

    ADS  MathSciNet  Google Scholar 

  124. A. Singh, Astrophys. Space Sci. 365, 54 (2020)

    ADS  Google Scholar 

  125. A.A. Mamon, Int. J. Mod. Phys. D 26(11), 1750136 (2017)

    ADS  Google Scholar 

  126. M.S. Berman, F.M. Gomide, Gen. Relativ. Gravit. 20, 191 (1998)

    ADS  Google Scholar 

  127. O. Akarsu, T. Dereli, Int. J. Theor. Phys. 51, 612 (2012)

    Google Scholar 

  128. P.K. Sahoo et al., Mod. Phys. Lett. A 33(33), 1850193 (2018)

    ADS  Google Scholar 

  129. P.K. Sahoo et al., New Astron. 60, 80 (2018)

    ADS  Google Scholar 

  130. Abdussattar, S.R. Prajapati, Astrophys. Space Sci. 331, 657 (2011)

    ADS  Google Scholar 

  131. M.A. Bakry, A.T. Shafeek, Astrophys. Space Sci. 364, 135 (2019)

    ADS  Google Scholar 

  132. N. Banerjee, S. Das, Gen. Relativ. Gravit. 37, 1695 (2005)

    ADS  Google Scholar 

  133. A.G. Riess et al., Astrophys. J. 607, 665 (2004)

    ADS  Google Scholar 

  134. B. Santos, J.C. Carvalho, J.S. Alcaniz, Astropart. Phys. 35, 17 (2011)

    ADS  Google Scholar 

  135. A.A. Mamon, S. Das, Int. J. Mod. Phys. D 25(03), 1650032 (2016)

    Google Scholar 

  136. R. Nair et al., J. Cosmol. Astropart. Phys. 01, 018 (2012)

    ADS  Google Scholar 

  137. L. Xu, H. Liu, Mod. Phys. Lett. A 23, 1939 (2008)

    ADS  Google Scholar 

  138. Y.G. Gong, A. Wang, Phys. Rev. D 73, 083506 (2006)

    ADS  Google Scholar 

  139. S. del Campo et al., Phys. Rev. D 86, 083509 (2012)

    ADS  Google Scholar 

  140. D. Pavon et al., in Proceedings of the MG13 Meeting on General Relativity (Stockholm University, Sweden, 2012)

  141. E.E.O. Ishida et al., Astropart. Phys. 28, 7 (2007)

    Google Scholar 

  142. A.A. Mamon, Mod. Phys. Lett. A 33(10), 1850056 (2018)

    ADS  Google Scholar 

  143. A.A. Mamon, S. Das, Eur. Phys. J. C 77(7), 495 (2017)

    ADS  Google Scholar 

  144. J. Roman-Garza et al., Eur. Phys. J. C 79, 890 (2019)

    ADS  Google Scholar 

  145. Z.X. Zhai et al., Phys. Lett. B 727, 8 (2013)

    ADS  Google Scholar 

  146. A. Mukherjee, N. Banerjee, Phys. Rev. D 93, 043002 (2016)

    ADS  Google Scholar 

  147. C. Ekart, Phys. Rev. 58, 919 (1940)

    ADS  Google Scholar 

  148. K. Karami, S. Ghaari, J. Fehri, Eur. Phys. J. C 64(1), 85 (2009)

    ADS  Google Scholar 

  149. G.M. Kremer, Phys. Rev. D 68, 123507 (2003)

    ADS  Google Scholar 

  150. P.H. Chavanis, Universe 1, 357 (2015)

    ADS  Google Scholar 

  151. A.Y. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265 (2001)

    ADS  Google Scholar 

  152. M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 66, 043507 (2002)

    ADS  Google Scholar 

  153. H.B. Benaoum, arxiv:hep-th/0205140v1 (2002)

  154. U. Debnath, Astrophys. Space Sci. 312, 295 (2007)

    ADS  Google Scholar 

  155. W. Chakraborty, U. Debnath, Gravit. Cosmol. 16, 223 (2010)

    ADS  Google Scholar 

  156. S. Nojiri, S.D. Odintsov, Phys. Rev. D 70, 103522 (2004)

    ADS  Google Scholar 

  157. Q. Zhang et al., Eur. Phys. J. C 75(7), 300 (2015)

    ADS  Google Scholar 

  158. D. Wang et al., Eur. Phys. J. C 77(4), 263 (2017)

    ADS  Google Scholar 

  159. J.-C. Wang, X.-H. Meng, Commun. Theor. Phys. 70(12), 67 (2018)

    Google Scholar 

  160. J. Weller, A. Albrecht, Phys. Rev. D 65, 103512 (2002)

    ADS  Google Scholar 

  161. H.K. Jassal, J.S. Bagla, T. Padmanabhan, Mon. Not. R. Astron. Soc. Lett. 356(1), L11 (2005)

    ADS  Google Scholar 

  162. D.-J. Liu et al., Mon. Not. R. Astron. Soc. 388, 275 (2008)

    ADS  Google Scholar 

  163. M. Chevallier, D. Polarski, Int. J. Mod. Phys. D 10, 213 (2001)

    ADS  Google Scholar 

  164. G. Pantazis, S. Nesseris, L. Perivolaropoulos, Phys. Rev. D 93, 103503 (2016)

    ADS  Google Scholar 

  165. R. Lazkoz, V. Salzano, I. Sendra, Phys. Lett. B 694, 198 (2010)

    ADS  Google Scholar 

  166. G. Efstathiou, Mon. Not. R. Astron. Soc. 310, 842 (1999)

    ADS  Google Scholar 

  167. L. Feng, T. Lu, J. Cosmol. Astropart. Phys. 11, 034 (2011)

    Google Scholar 

  168. E.M. Barboza Jr., J.S. Alcaniz, J. Cosmol. Astropart. Phys. 02, 042 (2012)

    ADS  Google Scholar 

  169. J.-Z. Ma, X. Zhang, Phys. Lett. B 699, 233 (2011)

    ADS  Google Scholar 

  170. C.-J. Feng et al., J. Cosmol. Astropart. Phys. 09, 023 (2012)

    ADS  Google Scholar 

  171. U. Alam et al., Mon. Not. R. Astron. Soc. 354, 275 (2004)

    ADS  Google Scholar 

  172. S. Hannestad, E. Mrtsell, J. Cosm. Astropart. Phys. 0409, 001 (2004)

    ADS  Google Scholar 

  173. J. Weller, A. Albrecht, Phys. Rev. D 65, 103512 (2002)

    ADS  Google Scholar 

  174. I. Sendra, R. Lazkoz, Mon. Not. R. Astron. Soc. 422(1), 776 (2012)

    ADS  Google Scholar 

  175. A.R. Cooray, D. Huterer, Astrophys. J. 513, L95 (1999)

    ADS  Google Scholar 

  176. H.-N. Lin, X. Li, L. Tang, Chin. Phys. C 43, 075101 (2019)

    ADS  Google Scholar 

  177. W. Yang et al., Phys. Rev. D 99, 043543 (2019)

    ADS  MathSciNet  Google Scholar 

  178. E. Elizalde et al., Int. J. Mod. Phys. D 28(01), 1950019 (2019)

    ADS  Google Scholar 

  179. C. Wetterich, Phys. Lett. B 594(1–2), 17 (2004)

    ADS  Google Scholar 

  180. S. Pan et al., Phys. Rev. D 98, 063510 (2018)

    ADS  Google Scholar 

  181. J.Z. Ma, X. Zhang, Phys. Lett. B 699, 233 (2011)

    ADS  Google Scholar 

  182. S. Sello, arXiv:1308.0449 [astro-ph.CO] (2013)

  183. M. Ozer, M.O. Taha, Nucl. Phys. B 287, 776 (1987)

    ADS  Google Scholar 

  184. A.-M.M. Abdel-Rahman, Gen. Relativ. Gravit. 22, 655 (1990)

    ADS  Google Scholar 

  185. S.K.J. Pacif, Abdussattar, Eur. Phys. J. Plus 129, 244 (2014)

    Google Scholar 

  186. Abdussattar, S.R. Prajapati, Chin. Phys. Lett. 28(2), 029803 (2011)

    ADS  Google Scholar 

  187. R.G. Vishwakarma, Gen. Relativ. Gravit. 33(11), 1973 (2001)

    ADS  Google Scholar 

  188. R.G. Vishwakarma, Abdussattar, A. Beesham, Phys. Rev. D 60, 063507 (1999)

    ADS  MathSciNet  Google Scholar 

  189. A.A. Mamon, Mod. Phys. Lett. A 33(20), 1850113 (2018)

    ADS  Google Scholar 

  190. S. Das et al., Res. Astron. Astrophys. 18(11), 131 (2018)

    ADS  Google Scholar 

  191. M. Rezaei et al., Phys. Rev. D 100, 023539 (2019)

    ADS  MathSciNet  Google Scholar 

  192. A.A. Mamon, K. Bamba, S. Das, Eur. Phys. J. C 77(1), 29 (2017)

    ADS  Google Scholar 

  193. R.G. Vishwakarma, Class. Quantum Gravity 18, 1159 (2001)

    ADS  Google Scholar 

  194. S.G. Rajeev, Phys. Lett. B 125, 144 (1983)

    ADS  Google Scholar 

  195. A.D. Linde, JETP Lett. 19, 183 (1974)

    ADS  Google Scholar 

  196. A. Beesham, Phys. Rev. D 48, 3539 (1993)

    ADS  Google Scholar 

  197. J.C. Carvalho, J.A.S. Lima, I. Waga, Phys. Rev. D 46, 2404 (1992)

    ADS  Google Scholar 

  198. S. Ray et al., Int. J. Theor. Phys. 48(9), 2499 (2009)

    Google Scholar 

  199. A.I. Arbab, Gravit. Cosmol. 8, 227 (2002)

    ADS  MathSciNet  Google Scholar 

  200. J.W. Moffat, Los Alamos report. arXiv:astro-ph/9608202 (1996)

  201. P.J.E. Peebles, B. Ratra, Astrophys. Phys. J. 325, L17 (1988)

    ADS  Google Scholar 

  202. V.K. Oikonomou, N.T. Chatzarakis, Ann. Phys. 411, 167999 (2019)

    Google Scholar 

  203. M. Shahalam, M. Sami, A. Wang, Phys. Rev. D 98, 043524 (2018)

    ADS  Google Scholar 

  204. M. Shahalam et al., Gen. Relativ. Gravit. 51, 125 (2019)

    ADS  MathSciNet  Google Scholar 

  205. I.Y. Aref’eva, A.I.P. Conf, Proc. 826, 301 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. J. Pacif.

Appendix

Appendix

A brief list of various parametrization schemes of parametrization of geometrical and physical parameters used in the past few decades to find exact solutions of Einstein field equations is given below.

1.1 Parametrizations of geometrical parameters

Scale factor a(t)

Given below a list of different expansion laws of the scale factor those have been extensively studied in different contexts.

  • \(a(t)=constant\) [33] (Static model)

  • \(a(t)=ct\) [44, 103] (Milne model or Linear expansion)

  • \(a(t)\sim \exp (H_{0}t)\) [104] (\(\varLambda \)CDM model or Exponential expansion)

  • \(a(t)\sim \exp \left[ -\alpha t\ln \left( \frac{t}{t_{0}}\right) +\beta t \right] \) [105] (Inflationary model)

  • \(a(t)\sim \exp \left[ -\alpha t-\beta t^{n}\right] \) [105] (Inflationary model)

  • \(a(t)\sim \left[ \exp (\alpha t)-\beta \exp (-\alpha t)\right] ^{n}\) [105] (Inflationary model)

  • \(a(t)\sim \exp \left( \frac{t}{M}\right) \left[ 1+\cos \left( \frac{ \varsigma (t)}{N}\right) \right] \) [106] (quasi-steady-state cosmology, Cyclic Universe)

  • \(a(t)\sim t^{\alpha }\) [107] (Power law Cosmology)

  • \(a(t)\sim t^{n}\exp (\alpha t)\) [108] (Hybrid expansion)

  • \(a(t)\sim \exp \left[ n(\log t)^{m}\right] \) [109] (Logamediate expansion)

  • \(a(t)\sim \cosh \alpha t\) [104] (Hyperbolic expansion)

  • \(a(t)\sim \left( \sinh \alpha t\right) ^{\frac{1}{n}}\) [110] (Hyperbolic expansion)

  • \(a(t)\sim \left( \frac{t}{t_{s}-t}\right) ^{n}\) [111] (Singular model)

  • \(a(t)\sim t^{n}\exp \left[ \alpha (t_{s}-t)\right] \) [111] (Singular model)

  • \(a(t)\sim \exp \left( \alpha \frac{t^{2}}{t_{*}^{2}}\right) \) [112] (Bouncing Model)

  • \(a(t)\sim \exp \left( \frac{\beta }{\alpha +1}(t-t_{s})^{\alpha +1}\right) \) [112] (Bouncing Model)

  • \(a(t)\sim \left( \frac{3}{2}\rho _{cr}t^{2}+1\right) ^{\frac{1}{3}}\) [112] (Bouncing Model)

  • \(a(t)\sim \left( \frac{t_{s}-t}{t_{*}}\right) \) [112] (Bouncing Model)

  • \(a(t)\sim \sin ^{2}\left( \alpha \frac{t}{t_{*}}\right) \) [112] (Bouncing Model)

Hubble parameter H(t) or H(a)

  • \(H(a)=Da^{-m}\) [113]

  • \(H(a)=e^{\frac{1-\gamma a^{2}}{\alpha a}}\) [114]

  • \(H(a)=\alpha (1+a^{-n})\) [115]

  • \(H(t)=\frac{m}{\alpha t+\beta }\) [116]

  • \(H(t)=\frac{16\alpha t}{15\left[ 1+(8\alpha t^{2})/5\right] }\) [117]

  • \(H(t)=m+\frac{n}{t}\) [118]

  • \(H(t)=\frac{\alpha t_{R}}{t(t_{R}-t)}\) [119]

  • \(H(t)=\frac{\alpha }{3}\left( t+T_{0}\right) ^{3}-\beta \left( t+T_{0}\right) +\gamma \) [120]

  • \(H(t)=\alpha e^{\lambda t}\) [121]

  • \(H(t)=\alpha +\beta (t_{s}-t)^{n}\) [121]

  • \(H(t)=\alpha -\beta e^{-nt}\) [122]

  • \(H(t)=f_{1}(t)+f_{2}(t)(t_{s}-t)^{n}\) [123]

  • \(H(t)=\frac{\beta t^{m}}{\left( t^{n}+\alpha \right) ^{p}}\) [64]

  • \(H(t)=n\alpha \tanh (m-nt)+\beta \) [124]

  • \(H(t)=\alpha \tanh \left( \frac{t}{t_{0}}\right) \) [18]

  • \(H(z)=\left[ \alpha +\left( 1-\alpha \right) \left( 1+z\right) ^{n}\right] ^{ \frac{3}{2n}}\) [125]

Deceleration parameter q(t or q(a), q(z)

  • \(q(t)=m-1\) [126]

  • \(q(t)=-\alpha t+m-1\) [127]

  • \(q(t)=\alpha \cos (\beta t)-1\) [128]

  • \(q(t)=-\frac{\alpha t}{1+t}\) [129]

  • \(q(t)=-\frac{\alpha (1-t)}{1+t}\) [129]

  • \(q(t)=-\frac{\alpha }{t^{2}}+\beta -1\) [130]

  • \(q(t)=(8n^{2}-1)-12nt+3t^{2}\) [131]

  • \(q(a)=-1-\frac{\alpha a^{\alpha }}{1+a^{\alpha }}\) [132]

  • \(q(z)=q_{0}+q_{1}z\) [133]

  • \(q(z)=q_{0}+q_{1}z(1+z)^{-1}\) [134]

  • \(q(z)=q_{0}+q_{1}z(1+z)(1+z^{2})^{-1}\) [135]

  • \(q(z)=\frac{1}{2}+q_{1}(1+z)^{-2}\) [136]

  • \(q(z)=q_{0}+q_{1}[1+\ln (1+z)]^{-1}\) [137]

  • \(q(z)=\frac{1}{2}+(q_{1}z+q_{2})(1+z)^{-2}\) [138]

  • \(q(z)=-1+\frac{3}{2}\left( \frac{\left( 1+z\right) ^{q_{2}}}{ q_{1}+(1+z)^{q_{2}}}\right) \) [139]

  • \(q(z)=-\frac{1}{4}\left[ 3q_{1}+1-3(q_{1}+1)\left( \frac{q_{1}e^{q_{2}\left( 1+z\right) }-e^{-q_{2}\left( 1+z\right) }}{q_{1}e^{q_{2}\left( 1+z\right) }+e^{-q_{2}\left( 1+z\right) }}\right) \right] \) [140]

  • \(q(z)=-\frac{1}{4}+\frac{3}{4}\left( \frac{q_{1}e^{q_{2}\frac{z}{\sqrt{1+z}} }-e^{-q_{2}\frac{z}{\sqrt{1+z}}}}{q_{1}e^{q_{2}\frac{z}{\sqrt{1+z}} }+e^{-q_{2}\frac{z}{\sqrt{1+z}}}}\right) \) [140]

  • \(q(z)=q_\mathrm{f}+\frac{q_{i}-q_\mathrm{f}}{1-\frac{q_{i}}{q_\mathrm{f}}\left( \frac{1+z_{t}}{ 1+z }\right) ^{\frac{1}{\tau }}}\) [141]

  • \(q(z)=q_{0}-q_{1}\left( \frac{(1+z)^{-\alpha }-1}{\alpha }\right) \) [142]

  • \(q(z)=q_{0}+q_{1}\left[ \frac{\ln (\alpha +z)}{1+z}-\beta \right] \) [143]

  • \(q(z)=q_{0}-(q_{0}-q_{1})(1+z)\exp \left[ z_{c}^{2}-(z+z_{c})^{2}\right] \) [144]

Jerk parameter j(z)

\(j(z)=-1+j_{1}\frac{f(z)}{E^{2}(z)},\) where \(f(z)=z\), \(\frac{z}{1+z}\), \( \frac{z}{(1+z)^{2}}\), \(\log (1+z)\) and \(E(z)=\frac{H(z)}{H_{0}}\) [145]

\(j(z)=-1+j_{1}\frac{f(z)}{h^{2}(z)},\) where \(f(z)=1\), \(1+z\), \((1+z)^{2}\), \( (1+z)^{-1}\) and \(h(z)=\frac{H(z)}{H_{0}}\) [146]

1.2 Parametrizations of physical parameters

Pressure \(p(\rho )\), p(z)

The matter content in the Universe is not properly known but it can be categorized with its equations of states \(p=p(\rho )\). Following is a list of some cosmic fluid considerations with their EoS. Also, some dark energy pressure parametrization is listed.

  • \(p(\rho )=w\rho \) (Perfect fluid EoS)

  • \(p{(\rho )}=w\rho -f(H)\) [147] (Viscous fluid EoS)

  • \(p{ (\rho )}=w\rho +k\rho ^{1+\frac{1}{n}}\) [148] (Polytropic gas EoS)

  • \(p{(\rho )}=\frac{8w\rho }{3-\rho }-3\rho ^{2}\) [149] (Vanderwaal gas EoS)

  • \(p{(\rho )}=-(w+1)\frac{\rho ^{2}}{\rho _{P}}+w\rho +(w+1)\rho _{\varLambda }\) [150] (EoS in quadratic form)

  • \(p{(\rho )}=-\frac{B}{\rho }\) [151] (Chaplygin gas EoS)

  • \(p{(\rho )}=-\frac{B}{\rho ^{\alpha }}\) [152] (Generalized Chaplygin gas EoS)

  • \(p{(\rho )}=A\rho -\frac{B}{\rho ^{\alpha }}\) [153] (Modified Chaplygin gas EoS)

  • \(p{(\rho )}=A\rho -\frac{B(a)}{\rho ^{\alpha }}\) [154] (Variable modified Chaplygin gas EoS)

  • \(p{(\rho )}=A(a)\rho -\frac{B(a)}{\rho ^{\alpha }}\) [155] (New variable modified Chaplygin gas EoS)

  • \(p{(\rho )}=-\rho -\rho ^{\alpha }\) [156] (DE EoS)

  • \(p(z)=\alpha +\beta z\) [157] (DE EoS)

  • \(p(z)=\alpha +\beta \frac{z}{1+z}\) [157] (DE EoS)

  • \(p(z)=\alpha +\beta \left( z+\frac{z}{1+z}\right) \) [158] (DE EoS)

  • \(p(z)=\alpha +\beta \ln (1+z)\) [159] (DE EoS)

Equation of state parameter w(z)

  • \(w(z)=w_{0}+w_{1}z\) [160] (Linear parametrization)

  • \(w(z)=w_{0}+w_{1}\frac{z}{\left( 1+z\right) ^{2}}\) [161] (JBP parametrization)

  • \(w(z)=w_{0}+w_{1}\frac{z}{\left( 1+z\right) ^{n}}\) [162] (Generalized JBP parametrization)

  • \(w(z)=w_{0}+w_{1}\frac{z}{1+z}\) [163] (CPL parametrization)

  • \(w(z)=w_{0}+w_{1}\left( \frac{z}{1+z}\right) ^{n}\) [162] (Generalized CPL parametrization)

  • \(w(z)=w_{0}+w_{1}\frac{z}{\sqrt{1+z^{2}}}\) [164] (Square-root parametrization)

  • \(w(z)=w_{0}+w_{1}\sin (z)\) [165] (Sine parametrization)

  • \(w(z)=w_{0}+w_{1}\ln (1+z)\) [166] (Logarithmic parametrization)

  • \(w(z)=w_{0}+w_{1}\ln \left( {\small 1+\frac{z}{1+z}}\right) \) [167] (Logarithmic parametrization)

  • \(w(z)=w_{0}+w_{1}\frac{z(1+z)}{1+z^{2}}\) [168] (BA parametrization)

  • \(w(z)=w_{0}+w_{1}\left( \frac{\ln (2+z)}{1+z}-\ln 2\right) \) (MZ parametrization)

  • \(w(z)=w_{0}+w_{1}\left( \frac{\sin (1+z)}{1+z}-\sin 1\right) \) [169] (MZ parametrization)

  • \(w(z)=w_{0}+w_{1}\frac{z}{1+z^{2}}\) (FSLL parametrization)

  • \(w(z)=w_{0}+w_{1}\frac{z^{2}}{1+z^{2}}\) [170] (FSLL parametrization)

  • \(w(z)=-1+\frac{1+z}{3}\frac{\alpha +2\beta (1+z)}{\gamma +2\alpha (1+z)+\beta (1+z)^{2}}\) [171] (ASSS parametrization)

  • \(w(z)=\frac{1+\left( \frac{1+z}{1+z_{s}}\right) ^{\alpha }}{ w_{0}+w_{1}\left( \frac{1+z}{1+z_{s}}\right) ^{\alpha }}\) [172] (Hannestad–Mortsell parametrization)

  • \(w(z)=-1+\alpha (1+z)+\beta (1+z)^{2}\) [173] (Polynomial parametrization)

  • \(w(z)=-1+\alpha \left[ 1+f(z)\right] +\beta \left[ 1+f(z)\right] ^{2}\) [174] (Generalized Polynomial parametrization)

  • \(w(z)=w_{0}+z\left( \frac{\mathrm{d}w}{\mathrm{d}z}\right) _{0}\) [175]

  • \(w(z)=\frac{-2(1+z)d_{c}^{^{\prime \prime }}-3d_{c}^{^{\prime }}}{3\left[ d_{c}^{^{\prime }}-\varOmega _{M}(1+z)^{3}\left( d_{c}^{^{\prime }}\right) ^{3} \right] }\) where \(d_{c}^{^{\prime }}=\int \limits _{0}^{z}\frac{H_{0}\mathrm{d}z}{H(z)}\) [176]

  • \(w_{x}(a)=w_{0}\exp (a-1)\) [177]

  • \(w_{x}(a)=w_{0}a(1-\log a)\) [177]

  • \(w_{x}(a)=w_{0}a\exp (1-a)\) [177]

  • \(w_{x}(a)=w_{0}a(1+\sin (1-a))\) [177]

  • \(w_{x}(a)=w_{0}a(1+\arcsin (1-a))\) [177]

  • \(w_\mathrm{de}(z)=w_{0}+w_{1}q\) [178]

  • \(w_\mathrm{de}(z)=w_{0}+w_{1}q(1+z)^{\alpha }\) [178]

  • \(w_\mathrm{de}(z)=\frac{w_{0}}{\left[ 1+b\ln (1+z)\right] ^{2}}\) [179]

  • \(w_{x}(z)=w_{0}+b\left\{ 1-\cos \left[ \ln (1+z)\right] \right\} \) [180]

  • \(w_{x}(z)=w_{0}+b\sin \left[ \ln (1+z)\right] \) [180]

  • \(w_{x}(z)=w_{0}+b\left[ \frac{\sin (1+z)}{1+z}-\sin 1\right] \) [180]

  • \(w_{x}(z)=w_{0}+b\left( \frac{z}{1+z}\right) \cos (1+z)\) [180]

  • \(w(z)=w_{0}+w_{a}\left[ \frac{\ln (2+z)}{1+z}-\ln 2\right] \) [181]

  • \(w(z)=w_{0}+w_{a}\left[ \frac{\ln (\alpha +1+z)}{\alpha +z}-\frac{\ln (\alpha +1)}{\alpha }\right] \) [182]

Energy density \(\rho \)

  • \(\rho =\rho _{c}\) [183, 184]

  • \(\rho \sim \theta ^{2}\) [185]

  • \(\rho =\frac{A}{a^{4}}\sqrt{{a}^{2}{\small +b}}\) [186]

  • \(\left( {\small \rho +3p}\right) a^{3}=A\) [187]

  • \(\rho +p=\rho _{c}\) [188]

  • \(\rho _\mathrm{de}(z)=\rho _\mathrm{de}(0)\left[ 1+\alpha \left( \frac{z}{1+z}\right) ^{n} \right] \) [189]

  • \(\rho _\mathrm{de}(z)=\frac{1}{\rho _{\phi }}\left( \frac{\mathrm{d}\rho _{\phi }}{\mathrm{d}\phi } \right) =-\frac{\alpha a}{\left( \beta +a\right) ^{2}}\) [190]

  • \(\rho _\mathrm{de}(z)=\alpha H(z)\) [191]

  • \(\rho _\mathrm{de}(z)=\alpha H(z)+\beta H^{2}(z)\) [191]

  • \(\rho _\mathrm{de}(z)=\frac{3}{\kappa ^{2}}\left[ \alpha +\beta H^{2}(z)\right] \) [191]

  • \(\rho _\mathrm{de}(z)=\frac{3}{\kappa ^{2}}\left[ \alpha +\frac{2}{3}\beta {\dot{H}} (z)\right] \) [191]

  • \(\rho _\mathrm{de}(z)=\frac{3}{\kappa ^{2}}\left[ \alpha H^{2}(z)+\frac{2}{3}\beta {\dot{H}}(z)\right] \) [191]

  • \(\rho _\mathrm{de}(z)=\frac{3}{\kappa ^{2}}\left[ \alpha +\beta H^{2}(z)+\frac{2}{3} \gamma {\dot{H}}(z)\right] \) [191]

  • \(\rho _\mathrm{de}(z)=\rho _{\phi 0}\left( 1+z\right) ^{\alpha }e^{\beta z}\) [192]

Cosmological constant (\(\varLambda \))

In order to resolve the long standing cosmological constant problem, authors have considered some variation laws for the cosmological constant in the past forty years, commonly known as “\(\varLambda \)-varying cosmologies” or “Decaying vacuum cosmologies” . Later, the idea was adopted to explain the accelerated expansion of the Universe considering varying \(\varLambda \). Following is list of such decay laws of \(\varLambda \).

\(\varLambda \sim a^{-n}\) [193]

\(\varLambda \sim H^{n}\) [49]

\(\varLambda \sim \rho \) [193]

\(\varLambda \sim t^{n}\) [49]

\(\varLambda \sim q^{n}\) [49]

\(\varLambda \sim e^{-\beta a}\) [194]

\(\varLambda =\varLambda (T)\) [195] T is Temperature

\(\varLambda \sim C+e^{-\beta t}\) [196]

\(\varLambda =3\beta H^{2}+\alpha a^{-2}\) [197]

\(\varLambda =\beta \frac{{{\ddot{a}}}}{a}\) [198]

\(\varLambda =3\beta H^{2}+\alpha \frac{{{\ddot{a}}}}{a}\) [199]

\(\frac{\mathrm{d}\varLambda }{\mathrm{d}t}\sim \beta \varLambda -\varLambda ^{2}\) [200]

Scalar field Potentials \(V(\phi )\)

\(V(\phi )=V_{0}\phi ^{n}\) [17] (Power law)

\(V(\phi )=V_{0}\exp \left[ -\frac{\alpha \phi }{M_{pl}}\right] \) [17] (exponential)

\(V(\phi )=\frac{V_{0}}{\cosh \left[ \phi /\phi _{0}\right] }\) [17]

\(V(\phi )=V_{0}\left[ \cosh \left( \alpha \phi /M_{pl}\right) \right] ^{-\beta }\) (hyperbolic) [17]

\(V(\phi )=\frac{\alpha }{\phi ^{n}}\) (Inverse power law) [201]

\(V(\phi )=\frac{V_{0}}{1+\beta \exp (-\alpha \kappa \phi )}\) (Woods–Saxon potential) [202]

\(V(\phi )=\alpha c^{2}\left[ \tanh \frac{\phi }{\sqrt{6}\alpha }\right] ^{2}\) (\(\alpha \)-attractor) [203]

\(V(\phi )=V_{0}(1+\phi ^{\alpha })^{2}\) [204]

\(V(\phi )=V_{0}\exp (\alpha \phi ^{2})\) [204]

\(V(\phi )=\frac{1}{4}(\phi ^{2}-1)^{2}\) [205].

Note: All the parametrization listed above contain some arbitrary constants such as \(\alpha \), \(\beta \), \(\gamma \), m, n, p, \(q_{0}\), \(q_{1}\), \( q_{2}\), \(w_{0}\), \(w_{1}\), A, B are model parameters which are generally constrained through observational datasets or through any analytical methods and also some arbitrary functions \(f_{1}(t)\), \(f_{2}(t)\). \(t_{s}\) denotes the bouncing time or future singularity time and \(t_{*}\) some arbitrary time.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacif, S.K.J. Dark energy models from a parametrization of H: a comprehensive analysis and observational constraints. Eur. Phys. J. Plus 135, 792 (2020). https://doi.org/10.1140/epjp/s13360-020-00769-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00769-y

Navigation