Skip to main content

Advertisement

Log in

Magnetohydrodynamics-based pumping flow model with propagative rhythmic membrane contraction

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A novel magnetohydrodynamics (MHD)-based pumping flow model is proposed to study the magnetic property in transient flow of viscous fluids through finite length channel where the upper channel wall is derived to describe the propagative membrane mode of rhythmic contractions. The flow is generated by the pressure difference due to propagative membrane contraction. Inlet and outlet pumping flow mechanisms are applied during the compression and expansion phases. This model is developed based on low Reynolds number flow to considering the microscale transport phenomena in biomedical sciences. Closed-form solutions for velocity fields, pressure, volumetric flow rate, wall shear stress and stream functions are derived under the lubrication analysis. Salient features of the flow analysis and pumping performances are illustrated with the aid of graphical results under the effects of time variation, membrane shape parameter and Hartmann number. Contour plots for velocity fields, stream function and shear stress are prepared for better visualization and analysis. It is inferred that the pressure along the channel length is more with increasing the magnetic field property in both phases (expansion and compression) of membrane contractions. Maximum pressure difference occurs at the membrane contractions, which represents the pumping mechanism. This pumping model can be utilized to design the novel biomedical MHD micropumps for wide-ranging biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Y. Aboelkassem, Insect-inspired micropump: flow in a tube with local contractions. Micromachines 6(8), 1143–1156 (2015)

    Article  Google Scholar 

  2. Y. Aboelkassem, Pumping flow model in a microchannel with propagative rhythmic membrane contraction. Phys. Fluids 31(5), 051902 (2019)

    Article  ADS  Google Scholar 

  3. Y. Aboelkassem, A.E. Staples, Flow transport in a microchannel induced by moving wall contractions: a novel micropumping mechanism. Acta Mech. 223(3), 463–480 (2012)

    Article  MathSciNet  Google Scholar 

  4. Y. Aboelkassem, A.E. Staples, A bioinspired pumping model for flow in a microtube with rhythmic wall contractions. J. Fluids Struct. 42, 187–204 (2013)

    Article  ADS  Google Scholar 

  5. Y. Aboelkassem, A.E. Staples, A three-dimensional model for flow pumping in a microchannel inspired by insect respiration. Acta Mech. 225(2), 493–507 (2014)

    Article  MathSciNet  Google Scholar 

  6. Y. Aboelkassem, A.E. Staples, J.J. Socha, Microscale flow pumping inspired by rhythmic tracheal compressions in insects. in ASME 2011 Pressure Vessels and Piping Conference, pp. 471–479. American Society of Mechanical Engineers Digital Collection (2011)

  7. N.S. Akbar, A.B. Huda, D. Tripathi, Thermally developing mhd peristaltic transport of nanofluids with velocity and thermal slip effects. Eur. Phys. J. Plus 131(9), 332 (2016)

    Article  Google Scholar 

  8. T.T. Bringley, S. Childress, N. Vandenberghe, J. Zhang, An experimental investigation and a simple model of a valveless pump. Phys. Fluids 20(3), 033602 (2008)

    Article  ADS  Google Scholar 

  9. C. Das, G. Wang, F. Payne, Some practical applications of magnetohydrodynamic pumping. Sens. Actuators A Phys. 201, 43–48 (2013)

    Article  Google Scholar 

  10. B. Dickinson, J. Singler, B.A. Batten, Mathematical modeling and simulation of biologically inspired hair receptor arrays in laminar unsteady flow separation. J. Fluids Struct. 29, 1–17 (2012)

    Article  ADS  Google Scholar 

  11. T. Hayat, S. Bibi, M. Rafiq, A. Alsaedi, F. Abbasi, Effect of an inclined magnetic field on peristaltic flow of williamson fluid in an inclined channel with convective conditions. J. Magn. Magn. Mater. 401, 733–745 (2016)

    Article  ADS  Google Scholar 

  12. M. Hemmat, A. Borhan, Creeping flow through sinusoidally constricted capillaries. Phys. Fluids 7(9), 2111–2121 (1995)

    Article  ADS  Google Scholar 

  13. T. Higashi, A. Yamagishi, T. Takeuchi, N. Kawaguchi, S. Sagawa, S. Onishi, M. Date, Orientation of erythrocytes in a strong static magnetic field. Blood 82, 1328–1334 (1993)

    Article  Google Scholar 

  14. W. Hughes, R. Elco, Magnetohydrodynamic lubrication flow between parallel rotating disks. J. Fluid Mech. 13(1), 21–32 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  15. Y. Komai, Augmented respiration in a flying insect. J. Exp. Biol. 201(16), 2359–2366 (1998)

    Google Scholar 

  16. E. Macagno, J. Christensen, C. Lee, Modeling the effect of wall movement on absorption in the intestine. Am. J. Phys. Gastrointest. Liver Phys. 243(6), G541–G550 (1982)

    Google Scholar 

  17. V. Narla, D. Tripathi, O.A. Bég, A. Kadir, Modeling transient magnetohydrodynamic peristaltic pumping of electroconductive viscoelastic fluids through a deformable curved channel. J. Eng. Math. 111(1), 127–143 (2018)

    Article  MathSciNet  Google Scholar 

  18. S. Noreen, M. Qasim, Peristaltic flow of mhd eyring-powell fluid in a channel. Eur. Phys. J. Plus 128(8), 91 (2013)

    Article  Google Scholar 

  19. R. Padma, R.T. Selvi, R. Ponalagusamy, Effects of slip and magnetic field on the pulsatile flow of a jeffrey fluid with magnetic nanoparticles in a stenosed artery. Eur. Phys. J. Plus 134(5), 221 (2019)

    Article  Google Scholar 

  20. T. Pedley, K. Stephanoff, Flow along a channel with a time-dependent indentation in one wall: the generation of vorticity waves. J. Fluid Mech. 160, 337–367 (1985)

    Article  ADS  Google Scholar 

  21. L. Peng, X. Zeng, H. Shen, D.Y. Luo, Magnetic stimulation for female patients with stress urinary incontinence, a meta-analysis of studies with short-term follow-up. Medicine 98(19), e15572 (2019)

    Article  Google Scholar 

  22. J. Prakash, E. Siva, D. Tripathi, M. Kothandapani, Nanofluids flow driven by peristaltic pumping in occurrence of magnetohydrodynamics and thermal radiation. Mater. Sci. Semicond. Process. 100, 290–300 (2019)

    Article  Google Scholar 

  23. M. Ralph, T. Pedley, Flow in a channel with a moving indentation. J. Fluid Mech. 190, 87–112 (1988)

    Article  ADS  Google Scholar 

  24. B. Schmidt-Nielsen, B. Schmidt-Nielsen, On the function of the mammalian renal papilla and the peristalsis of the surrounding pelvis. Acta Phys. 202(3), 379–385 (2011)

    Article  Google Scholar 

  25. T.W. Secomb, Flow in a channel with pulsating walls. J. Fluid Mech. 88(2), 273–288 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Shehzad, F. Abbasi, T. Hayat, F. Alsaadi, G. Mousa, Peristalsis in a curved channel with slip condition and radial magnetic field. Int. J. Heat Mass Trans. 91, 562–569 (2015)

    Article  Google Scholar 

  27. F. Skalak, C. Wang, On the unsteady squeezing of a viscous fluid from a tube. ANZIAM J. 21(1), 65–74 (1979)

    MATH  Google Scholar 

  28. H. Steinrück, W. Zackl, M. Müllner, H. Neth, A double channel membrane pump. PAMM 10(1), 485–486 (2010)

    Article  Google Scholar 

  29. B. Tripathi, B.K. Sharma, M. Sharma, Modeling and analysis of mhd two-phase blood flow through a stenosed artery having temperature-dependent viscosity. Eur. Phys. J. Plus 134(9), 466 (2019)

    Article  Google Scholar 

  30. D. Tripathi, A mathematical model for swallowing of food bolus through the oesophagus under the influence of heat transfer. Int. J. Therm. Sci. 51, 91–101 (2012)

    Article  Google Scholar 

  31. D. Tripathi, S. Bhushan, O.A. Bég, Transverse magnetic field driven modification in unsteady peristaltic transport with electrical double layer effects. Colloids Surf. A Physicochem. Eng. Asp. 506, 32–39 (2016)

    Article  Google Scholar 

  32. D. Tripathi, A. Yadav, O.A. Bég, Electro-osmotic flow of couple stress fluids in a micro-channel propagated by peristalsis. Eur. Phys. J. Plus 132(4), 173 (2017)

    Article  Google Scholar 

  33. H. Tse, H. Man, T. Yue, Effect of magnetic field on plasma control during co2 laser welding. Opt. Laser Technol. 31(5), 363–368 (1999)

    Article  ADS  Google Scholar 

  34. S. Uchida, H. Aoki, Unsteady flows in a semi-infinite contracting or expanding pipe. J. Fluid Mech. 82(2), 371–387 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  35. P.J. Wang, C.Y. Chang, M.L. Chang, Simulation of two-dimensional fully developed laminar flow for a magneto-hydrodynamic (mhd) pump. Biosens. Bioelectr. 20(1), 115–121 (2004)

    Article  MathSciNet  Google Scholar 

  36. T. WEIS-FOGH, Respiration and tracheal ventilation in locusts and other flying insects. J. Exp. Biol. 47(3), 561–587 (1967)

    Google Scholar 

  37. A.A. Zafar, N.A. Shah, I. Khan, Two phase flow of blood through a circular tube with magnetic properties. J.Magn. Magn. Mater. 477, 382–387 (2019)

    Article  ADS  Google Scholar 

  38. X. Zhou, M. Gao, L. Gui, A liquid-metal based spiral magnetohydrodynamic micropump. Micromachines 8(12), 365 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmendra Tripathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandari, D.S., Tripathi, D. & Narla, V.K. Magnetohydrodynamics-based pumping flow model with propagative rhythmic membrane contraction. Eur. Phys. J. Plus 135, 890 (2020). https://doi.org/10.1140/epjp/s13360-020-00889-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00889-5

Navigation