Skip to main content

Advertisement

Log in

A scientific study on the role of organic lime mortars of Padmanabhapuram Palace, Thuckalay, Tamilnadu, India

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This research aims at providing the scientific evidence of ancient construction practice and production technology on the use locally available geoearth materials and natural herbs, namely kadukkai (Terminalia Chebula), neelamari (Indigofera tinctoria), hibiscus (Rosa sinensis), palm jaggery (Borassus flabellifer), aloe vera (Aloe barbadenis) as specified in ancient palm leaf texts which were adopted at Padmanabhapuram Palace, India for preparing the traditional lime mortars. Six mortar samples of three different mortar typologies (wall, bedding and floor finish) were taken from the Padmanabhapuram Palace for the study. The sampled mortars were characterized using physiochemical analysis as well as modern analytical techniques including XRD, TG-DTA, FT-IR and FESEM-EDX methods. Different binder-to-aggregate ratios was proportioned for wall plaster (1:3), bedding mortar (1:2) and floor finish (1:1) and was confirmed through acid loss analysis. Wall plaster samples indicated the presence of organic protein and polysaccharide spectral peaks substantiated by FT-IR analysis. Organics have played a significant role in the formation of calcium aluminate silicates and carbonate polymorphs to enhance the crystalline hydrated phases observed through XRD and FESEM analyses. The thermal investigation substantiated that calcite decarbonation mostly occurred between 705 and 730 °C. The results apprised the wide use of hydraulic lime with fine-grained aggregate particles, added with fermented organics to produce an environmentally friendly organic mortar to restore the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

PP (1-6):

Padmanabhapuram Palace locations

SBW:

Structurally bound water

References

  1. P. Degryse, J. Elsen, M. Waelkens, Study of ancient mortars from Sagalassos (Turkey) in view of their conservation. Cem. Concr. Res. 32, 1457–1463 (2002). https://doi.org/10.1016/S0008-8846(02)00807-4

    Article  Google Scholar 

  2. W.H. Gourdin, W.D. Kingery, The Beginnings of pyrotechnology: Neolithic and Egyptian Lime Plaster. J F Archaeol 2, 133 (2006). https://doi.org/10.2307/529624

    Article  Google Scholar 

  3. S. Pradeep, T. Selvaraj, Identification of bio-minerals and their origin in lime mortars of ancient monument: Thanjavur Palace. Int. J. Archit. Herit. (2019). https://doi.org/10.1080/15583058.2019.1623341

    Article  Google Scholar 

  4. R. Ravi, S. Thirumalini, N. Taher, Analysis of ancient lime plasters—reason behind longevity of the Monument Charminar, India a study. J. Build. Eng. 20, 30–41 (2018). https://doi.org/10.1016/j.jobe.2018.04.010

    Article  Google Scholar 

  5. P. Swallow, D. Carrington, Limes and lime mortars—part one. J. Archit. Conserv. 1, 7–25 (1995). https://doi.org/10.1080/13556207.1995.10785142

    Article  Google Scholar 

  6. Y. Zeng, B. Zhang, X. Liang, A case study and mechanism investigation of typical mortars used on ancient architecture in China. Thermochim. Acta 473, 1–6 (2008). https://doi.org/10.1016/j.tca.2008.03.019

    Article  Google Scholar 

  7. P. Zhao, M.D. Jackson, Y. Zhang et al., Material characteristics of ancient Chinese lime binder and experimental reproductions with organic admixtures. Constr. Build. Mater. 84, 477–488 (2015). https://doi.org/10.1016/j.conbuildmat.2015.03.065

    Article  Google Scholar 

  8. J. Alejandra, V. Pérez, E. Mercedes, et al., Ge-conservación Influence of inorganic and organic additives on spectrophotometry of lime mortars, pp. 292–299 (2015)

  9. S.Q. Fang, H. Zhang, B.J. Zhang, Y. Zheng, The identification of organic additives in traditional lime mortar. J. Cult. Herit. 15, 144–150 (2014). https://doi.org/10.1016/j.culher.2013.04.001

    Article  MathSciNet  Google Scholar 

  10. I. Holmström, Mortars, cements and grouts for conservation and repair. Some urgent needs for research. Mortars, Cem grouts used Conserv Hist Build = Mortiers, ciments coulis Util dans la Conserv des bâtiments Hist Symp 3-6111981 Rome 19–24 (1982)

  11. L. Germinario, G.F. Andriani, R. Laviano, Petrography, mineralogy, chemical and technical properties of the building stone of ostuni cathedral (Italy): inferences on diagnostics and conservation. Period di Mineral 83, 379–400 (2014). https://doi.org/10.2451/2014PM0021

    Article  Google Scholar 

  12. A. Izaguirre, J. Lanas, J.I. Álvarez, Ageing of lime mortars with admixtures: durability and strength assessment. Cem. Concr. Res. 40, 1081–1095 (2010). https://doi.org/10.1016/j.cemconres.2010.02.013

    Article  Google Scholar 

  13. E. Čechová, I. Papayianni, M. Stefanidou, Properties of lime-based restoration mortars modified by the addition of linseed oil, in 2nd Historic Mortars Conference HMC2010 and RILEM TC 203-RHM Final Workshop 22–24 September 2010, Prague, Czech Republic, pp. 937–949 (2010)

  14. F. Pacheco-Torgal, S. Jalali, Cementitious building materials reinforced with vegetable fibres: a review. Constr. Build. Mater. 25, 575–581 (2011). https://doi.org/10.1016/j.conbuildmat.2010.07.024

    Article  Google Scholar 

  15. E. Cechova, The effect of linseed oil on the properties of lime-based restoration. PhD Thesis submitted to Alma mater studirom- Universita of Bologna, Science for Conservation (2009)

  16. S. Chandra, J. Aavik, Influence of proteins on some properties of portland cement mortar. Int. J. Cem. Compos. Light Concr. 9, 91–94 (1987). https://doi.org/10.1016/0262-5075(87)90024-8

    Article  Google Scholar 

  17. Q.Q. Pei, X.D. Wang, L.Y. Zhao et al., A sticky rice paste preparation method for reinforcing earthen heritage sites. J. Cult. Herit. (2020). https://doi.org/10.1016/j.culher.2020.01.009

    Article  Google Scholar 

  18. F. Yang, B. Zhang, C. Pan, Y. Zeng, Traditional mortar represented by sticky rice lime mortar-One of the great inventions in ancient China. Sci. China Ser. E Technol. Sci. 52, 1641–1647 (2009). https://doi.org/10.1007/s11431-008-0317-0

    Article  ADS  Google Scholar 

  19. I. Centauro, E. Cantisani, C. Grandin et al., The influence of natural organic materials on the properties of traditional lime-based mortars. Int. J. Archit. Herit. 11, 670–684 (2017). https://doi.org/10.1080/15583058.2017.1287978

    Article  Google Scholar 

  20. J.M.C. Cayme, N. Aniano Jr., Characterization of historica lime mortar from the spanish colonial period in the Philippines. Conserv. Sci. Cult. Herit. (2016). https://doi.org/10.6092/issn.1973-9494/7164

    Article  Google Scholar 

  21. T.S. Nayar, S. Binu, P. Pushpangadan, Uses of plants and plant products in traditional Indian mural paintings. Econ. Bot. 53, 41–50 (1999). https://doi.org/10.1007/BF02860791

    Article  Google Scholar 

  22. S. Thirumalini, R. Ravi, S.K. Sekar, M. Nambirajan, Knowing from the past—ingredients and technology of ancient mortar used in Vadakumnathan temple, Tirussur, Kerala, India. J. Build. Eng. 4, 101–112 (2015). https://doi.org/10.1016/j.jobe.2015.09.004

    Article  Google Scholar 

  23. M. Singh, S. Vinodh Kumar, Mineralogical, chemical, and thermal characterizations of historic lime plasters of thirteenth–sixteenth-century Daulatabad Fort, India. Stud. Conserv. 63, 482–496 (2018). https://doi.org/10.1080/00393630.2018.1457765

    Article  Google Scholar 

  24. M. Singh, B.R. Arbad, Scientific studies on decorated mud mortar of Ajanta. Case Stud. Constr. Mater. 1, 138–143 (2014). https://doi.org/10.1016/j.cscm.2014.07.001

    Article  Google Scholar 

  25. A. Aksamija, W. Nowik, P. Lehuédé et al., Investigation of organic additives in Italian Renaissance devotion stucco reliefs from French collections. J. Cult. Herit. 39, 66–81 (2019). https://doi.org/10.1016/j.culher.2019.03.012

    Article  Google Scholar 

  26. S. Thirumalini, R. Ravi, M. Rajesh, Experimental investigation on physical and mechanical properties of lime mortar: effect of organic addition. J. Cult. Herit. 31, 97–104 (2018). https://doi.org/10.1016/j.culher.2017.10.009

    Article  Google Scholar 

  27. L. Rampazzi, M.P. Colombini, C. Conti et al., Technology of medieval mortars: an investigation into the use of organic additives. Archaeometry 58(1), 115–130 (2016). https://doi.org/10.1111/arcm.12155

    Article  Google Scholar 

  28. K. Macwilliam, C. Nunes, Structural analysis of historical. Constructions 18, 1949–1958 (2019). https://doi.org/10.1007/978-3-319-99441-3

    Article  Google Scholar 

  29. S.M. Surendran, R. Ravi, G.S. Subramani, S. Chattopadhyay, Characterization of ancient mortars of Veppathur Temple. Int. J. Civ. Eng. Technol. 8, 2132–2139 (2017)

    Google Scholar 

  30. R. Eires, A. Camões, S. Jalali, Ancient materials and techniques to improve the earthen building durability. Key Eng. Mater. 634, 357–366 (2015). https://doi.org/10.4028/www.scientific.net/KEM.634.357

    Article  Google Scholar 

  31. O.K. Praveen, “Forts I, Kanyakumari” OF, Enquiry D-AH. Hist. Res. J. 9152, 1–6 (2018)

    Google Scholar 

  32. M. Bratitsi, I. Liritzis, A. Vafiadou et al., Critical assessment of chromatic index in archaeological ceramics by Munsell and Rgb: novel contribution to characterization and provenance studies. Mediterr. Archaeol. Archaeom. 18, 175–212 (2018). https://doi.org/10.5281/zenodo.1297163

    Article  Google Scholar 

  33. B. Middendorf, J.J. Hughes, K. Callebaut et al., Investigative methods for the characterisation of historic mortars—part 1: mineralogical characterisation. Mater. Struct. Constr. 38, 761–769 (2005). https://doi.org/10.1617/14281

    Article  Google Scholar 

  34. M.R. Valluzzi, Rilem workshop on repair mortars for historic masonry -delft, 26th–28th January 2005 “Requirements for the choice of mortar and grouts for consolidation of three-leaf stone masonry walls” (2005)

  35. M. Lezzerini, S. Raneri, S. Pagnotta et al., Archaeometric study of mortars from the Pisa’s Cathedral Square (Italy). Meas. J. Int. Meas. Confed. 126, 322–331 (2018). https://doi.org/10.1016/j.measurement.2018.05.057

    Article  Google Scholar 

  36. M. Watanabe, Sample preparation for X-ray fluorescence analysis IV. Fusion bead method part 1 basic principals. Rigaku J. 31, 12–17 (2015)

    Google Scholar 

  37. S. Fiorentino, G.C. Grillini, M. Vandini, The National Monument to Francesco Baracca in Lugo di Romagna (Ravenna, Italy): materials, techniques and conservation aspects. Case Stud. Constr. Mater. 3, 19–32 (2015). https://doi.org/10.1016/j.cscm.2015.05.003

    Article  Google Scholar 

  38. S. Jayasingh, T. Selvaraj, Influence of organic additive on carbonation of air lime mortar–changes in mechanical and mineralogical characteristics. Eur. J. Environ. Civ. Eng. (2019). https://doi.org/10.1080/19648189.2020.1731716

    Article  Google Scholar 

  39. C. Fiori, M. Vandini, S. Prati, G. Chiavari, Vaterite in the mortars of a mosaic in the Saint Peter basilica, Vatican (Rome). J. Cult. Herit. 10, 248–257 (2009). https://doi.org/10.1016/j.culher.2008.07.011

    Article  Google Scholar 

  40. S. Thirumalini, S.K. Sekar, R. Ravi, Revealing the ancient secret of lime mortar exposed to marine environment used in and around Padaleeswarar, in 4 th Historic Mortars Conference. Proc 4th Hist Mortars Conf HMC2016 (2017)

  41. S. Divya Rani, M. Santhanam, S. Bais, Historic incised plasterwork of India—characteristics and microstructure. Constr. Build. Mater. 221, 253–262 (2019). https://doi.org/10.1016/j.conbuildmat.2019.06.057

    Article  Google Scholar 

  42. C. Rispoli, A. De Bonis, R. Esposito et al., Unveiling the secrets of Roman craftsmanship: mortars from Piscina Mirabilis (Campi Flegrei, Italy). Archaeol. Anthropol. Sci. (2020). https://doi.org/10.1007/s12520-019-00964-8

    Article  Google Scholar 

  43. C. Rispoli, A. De Bonis, V. Guarino et al., The ancient pozzolanic mortars of the Thermal complex of Baia (Campi Flegrei, Italy). J. Cult. Herit. 40, 143–154 (2019). https://doi.org/10.1016/j.culher.2019.05.010

    Article  Google Scholar 

  44. Munsell Charts (1994). Rev. edn. Macbeth Division of Kollmorgen Instruments, New Windsor, NY.

  45. D.H. Swann, R.W. Fisher, M.J. Walters, Visual Estimates of Grain Size Distribution in Some Chester Sandstones,Division of Illinois state geological survey, Urbana-1959

  46. D.J. Harrison, S. Fidgett, P.W. Scott et al., Sustainable river mining of aggregates in developing countries. Geol. Soc. Spec. Publ. 250, 35–46 (2005). https://doi.org/10.1144/GSL.SP.2005.250.01.05

    Article  ADS  Google Scholar 

  47. M. Stefanidou, I. Papayianni, The role of aggregates on the structure and properties of lime mortars. Cem. Concr. Compos. 27, 914–919 (2005). https://doi.org/10.1016/j.cemconcomp.2005.05.001

    Article  Google Scholar 

  48. D. Miriello, D. Barca, G.M. Crisci et al., Characterization and provenance of lime plasters from the Templo Mayor of Tenochtitlan (Mexico city). Archaeometry 53, 1119–1141 (2011). https://doi.org/10.1111/j.1475-4754.2011.00603.x

    Article  Google Scholar 

  49. P. Maravelaki-Kalaitzaki, A. Bakolas, I. Karatasios, V. Kilikoglou, Hydraulic lime mortars for the restoration of historic masonry in Crete. Cem. Concr. Res. 35, 1577–1586 (2005). https://doi.org/10.1016/j.cemconres.2004.09.001

    Article  Google Scholar 

  50. H. Binici, M. Akcan, O. Aksogan, R. Resatoglu, Physico-chemical and mineralogical study of ancient mortars used in Harran area (Turkey). Adv. Concr. Constr. (2017). https://doi.org/10.12989/acc.2017.5.6.639

    Article  Google Scholar 

  51. J. Lanas, J.I. Alvarez, Masonry repair lime-based mortars: factors affecting the mechanical behavior. Cem. Concr. Res. 33, 1867–1876 (2003). https://doi.org/10.1016/S0008-8846(03)00210-2

    Article  Google Scholar 

  52. K. Elert, C. Rodriguez-Navarro, E.S. Pardo et al., Lime mortars for the conservation of historic buildings. Stud. Conserv. 47, 62–75 (2002). https://doi.org/10.1179/sic.2002.47.1.62

    Article  Google Scholar 

  53. A. Moropoulou, A. Bakolas, S. Anagnostopoulou, Composite materials in ancient structures. Cem. Concr. Compos. 27, 295–300 (2005). https://doi.org/10.1016/j.cemconcomp.2004.02.018

    Article  Google Scholar 

  54. I. Papayianni, V. Pachta, M. Stefanidou, Analysis of ancient mortars and design of compatible repair mortars: the case study of Odeion of the archaeological site of Dion. Constr. Build. Mater. 40, 84–92 (2013). https://doi.org/10.1016/j.conbuildmat.2012.09.086

    Article  Google Scholar 

  55. A. Ronen, A. Bentur, I. Soroka, A plastered floor from the Neolithic Village, Yiftahel (Israel). Paléorient 17, 149–155 (1991). https://doi.org/10.3406/paleo.1991.4559

    Article  Google Scholar 

  56. C. Rodriguez-Navarro, I. Vettori, E. Ruiz-Agudo, Kinetics and mechanism of calcium hydroxide conversion into calcium alkoxides: implications in heritage conservation using nanolimes. Langmuir 32, 5183–5194 (2016). https://doi.org/10.1021/acs.langmuir.6b01065

    Article  Google Scholar 

  57. M. Philokyprou, The beginnings of pyrotechnology in Cyprus. Int. J. Archit. Herit. 6, 172–199 (2012). https://doi.org/10.1080/15583058.2010.528145

    Article  Google Scholar 

  58. M. Singh, B.R. Arbad, Characterization of traditional mud mortar of the decorated wall surfaces of Ellora caves. Constr. Build. Mater. 65, 384–395 (2014). https://doi.org/10.1016/j.conbuildmat.2014.04.126

    Article  Google Scholar 

  59. I. Garofano, M.D. Robador, A. Duran, Materials characteristics of Roman and Arabic mortars and stuccoes from the patio de banderas in the real alcazar of seville (Spain). Archaeometry 56, 541–561 (2014). https://doi.org/10.1111/arcm.12041

    Article  Google Scholar 

  60. C. Corti, L. Rampazzi, R. Bugini et al., Thermal analysis and archaeological chronology: the ancient mortars of the site of Baradello (Como, Italy). Thermochim. Acta 572, 71–84 (2013). https://doi.org/10.1016/j.tca.2013.08.015

    Article  Google Scholar 

  61. K. Elert, R.M. García Sánchez, C. Benavides-Reyes, F. Linares Ordóñez, Influence of animal glue on mineralogy, strength and weathering resistance of lime plasters. Constr. Build. Mater. 226, 625–635 (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.261

    Article  Google Scholar 

  62. L. Ventol, M. Vendrell, P. Giraldez, L. Merino, Traditional organic additives improve lime mortars: new old materials for restoration and building natural stone fabrics. Constr. Build. Mater. 25, 3313–3318 (2011). https://doi.org/10.1016/j.conbuildmat.2011.03.020

    Article  Google Scholar 

  63. L. Ventolà, M. Vendrell, P. Giraldez, Newly-designed traditional lime mortar with a phase change material as an additive. Constr. Build. Mater. 47, 1210–1216 (2013). https://doi.org/10.1016/j.conbuildmat.2013.05.111

    Article  Google Scholar 

  64. M. Singh, S. Vinodh Kumar, S.A. Waghmare, P.D. Sabale, Aragonite-vaterite-calcite: polymorphs of CaCO3 in 7th century CE lime plasters of Alampur group of temples, India. Constr. Build. Mater. 112, 386–397 (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.191

    Article  Google Scholar 

  65. A. Moropoulou, A. Bakolas, K. Bisbikou, Characterization of ancient, byzantine and later historic mortars by thermal and X-ray diffraction techniques. Thermochim. Acta 269–270, 779–795 (1995). https://doi.org/10.1016/0040-6031(95)02571-5

    Article  Google Scholar 

  66. S. Jayasingh, T. Selvaraj, Structural analysis of historical constructions. Springer International Publishing, RILEM Bookseries 18, 421–428 (2019). https://doi.org/10.1007/978-3-319-99441-3_45

    Article  Google Scholar 

  67. M. Shao, L. Li, W. Chen, J. Liu, Investigation and modification of two kinds of Chinese traditional lime in cultural building relics. J. Cult. Herit. 36, 118–127 (2019). https://doi.org/10.1016/j.culher.2018.02.018

    Article  Google Scholar 

  68. D. Ergenç, R. Fort, Accelerating carbonation in lime-based mortar in high CO2 environments. Constr. Build. Mater. 188, 314–325 (2018). https://doi.org/10.1016/j.conbuildmat.2018.08.125

    Article  Google Scholar 

  69. J.J. Hughes, J. Valek, Mortars in historic buildings.Published by Historic scotland, 80, ISBN 1903570 82 4 (2003)

  70. I.A. Meir, C. Freidin, I. Gilead, Analysis of Byzantine mortars from the Negev Desert, Israel, and subsequent environmental and economic implications. J. Archaeol. Sci. 32, 767–773 (2005). https://doi.org/10.1016/j.jas.2004.12.009

    Article  Google Scholar 

  71. M.D. Sharma, I. Rautela, N. Sharma et al., Gc-Ms Analysis of Phytocomponents in Juice Sample of Indian Cane: Saccharum Barberi. Int. J. Pharm. Sci. Res. 6, 5147–5153 (2015). https://doi.org/10.13040/IJPSR.0975-8232.6(12).5147-53

    Article  Google Scholar 

Download references

Acknowledgements

The author is thankful to the Kerala State Archaeology Department for their cooperation and support to collect the information about the palace and authors are thankful to Mr Ajith & Mr. P.S Rajan, Conservator Padmanabhapuram Palace, Thuckalay for the help rendered for the collection of samples and in situ production technology incorporated during the construction and restoration works. The author is grateful to Dr S. Vijayalakshmi, Professor in School of Social Sciences and languages for her help with the language corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thirumalini Selvaraj.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivakumar, M., Selvaraj, T. A scientific study on the role of organic lime mortars of Padmanabhapuram Palace, Thuckalay, Tamilnadu, India. Eur. Phys. J. Plus 135, 923 (2020). https://doi.org/10.1140/epjp/s13360-020-00896-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00896-6

Navigation